Spaces:
Running
on
Zero
Running
on
Zero
chenlin
commited on
Commit
·
49bae8f
1
Parent(s):
f0b9014
support multi-mode infer
Browse files- .gitattributes +2 -0
- SimHei.ttf +3 -0
- app.py +252 -21
.gitattributes
CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.ttf filter=lfs diff=lfs merge=lfs -text
|
38 |
+
|
SimHei.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6625b9b91a5054faa413b69d171020c3f6d9a872345d8a3c5e3df61809291b7f
|
3 |
+
size 10043912
|
app.py
CHANGED
@@ -1,10 +1,18 @@
|
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import tempfile
|
|
|
4 |
|
5 |
-
import spaces
|
6 |
import gradio as gr
|
|
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
title_markdown = ("""
|
10 |
<div style="display: flex; justify-content: flex-start; align-items: center; text-align: center;">
|
@@ -33,31 +41,261 @@ The service is a research preview intended for non-commercial use only, subject
|
|
33 |
""")
|
34 |
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
@spaces.GPU(duration=60)
|
44 |
-
def generate_slidingcaptioning(
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
@spaces.GPU(duration=60)
|
48 |
-
def generate_fastcaptioning(
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@spaces.GPU(duration=60)
|
52 |
def generate_promptrecaptioning(text):
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
def save_video_to_local(video_path):
|
56 |
filename = os.path.join('temp', next(
|
57 |
tempfile._get_candidate_names()) + '.mp4')
|
58 |
shutil.copyfile(video_path, filename)
|
59 |
return filename
|
60 |
|
|
|
61 |
with gr.Blocks(title='ShareCaptioner-Video', theme=gr.themes.Default(), css=block_css) as demo:
|
62 |
gr.Markdown(title_markdown)
|
63 |
state = gr.State()
|
@@ -65,14 +303,13 @@ with gr.Blocks(title='ShareCaptioner-Video', theme=gr.themes.Default(), css=bloc
|
|
65 |
first_run = gr.State()
|
66 |
|
67 |
with gr.Row():
|
68 |
-
gr.Markdown("### The ShareCaptioner-Video is a Four-in-One exceptional video captioning model with the following capabilities:\n1. Fast captioning, 2. Sliding Captioning, 3. Clip Summarizing, 4. Prompt Re-Captioning")
|
69 |
with gr.Row():
|
70 |
gr.Markdown("(THE DEMO OF \"Clip Summarizing\" IS COMING SOON...)")
|
71 |
with gr.Row():
|
72 |
with gr.Column(scale=6):
|
73 |
with gr.Row():
|
74 |
video = gr.Video(label="Input Video")
|
75 |
-
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
76 |
with gr.Row():
|
77 |
textbox = gr.Textbox(
|
78 |
show_label=False, placeholder="Input Text", container=False
|
@@ -97,14 +334,8 @@ with gr.Blocks(title='ShareCaptioner-Video', theme=gr.themes.Default(), css=bloc
|
|
97 |
)
|
98 |
gr.Markdown(learn_more_markdown)
|
99 |
|
100 |
-
submit_btn_sc.click(generate_slidingcaptioning, [video],[textbox_out])
|
101 |
submit_btn_fc.click(generate_fastcaptioning, [video], [textbox_out])
|
102 |
submit_btn_pr.click(generate_promptrecaptioning, [textbox], [textbox_out])
|
103 |
|
104 |
-
### for local launch
|
105 |
-
# demo.launch(server_name="0.0.0.0",
|
106 |
-
# server_port=28358,
|
107 |
-
# share=True)
|
108 |
-
|
109 |
-
### for huggingface launch
|
110 |
demo.launch()
|
|
|
1 |
+
import base64
|
2 |
import os
|
3 |
import shutil
|
4 |
import tempfile
|
5 |
+
from io import BytesIO
|
6 |
|
|
|
7 |
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
import torch
|
10 |
+
import torchvision.transforms as transforms
|
11 |
+
from decord import VideoReader
|
12 |
+
from PIL import Image, ImageDraw, ImageFont
|
13 |
+
from transformers import AutoModel, AutoTokenizer
|
14 |
+
|
15 |
+
import spaces
|
16 |
|
17 |
title_markdown = ("""
|
18 |
<div style="display: flex; justify-content: flex-start; align-items: center; text-align: center;">
|
|
|
41 |
""")
|
42 |
|
43 |
|
44 |
+
new_path = 'Lin-Chen/ShareCaptioner-Video'
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(new_path, trust_remote_code=True)
|
46 |
+
model = AutoModel.from_pretrained(
|
47 |
+
new_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
|
48 |
+
model.cuda()
|
49 |
+
model.tokenizer = tokenizer
|
50 |
+
|
51 |
+
|
52 |
+
def padding_336(b, pad=336):
|
53 |
+
width, height = b.size
|
54 |
+
tar = int(np.ceil(height / pad) * pad)
|
55 |
+
top_padding = int((tar - height)/2)
|
56 |
+
bottom_padding = tar - height - top_padding
|
57 |
+
left_padding = 0
|
58 |
+
right_padding = 0
|
59 |
+
b = transforms.functional.pad(
|
60 |
+
b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255, 255, 255])
|
61 |
+
|
62 |
+
return b
|
63 |
+
|
64 |
+
|
65 |
+
def HD_transform(img, hd_num=25):
|
66 |
+
width, height = img.size
|
67 |
+
trans = False
|
68 |
+
if width < height:
|
69 |
+
img = img.transpose(Image.TRANSPOSE)
|
70 |
+
trans = True
|
71 |
+
width, height = img.size
|
72 |
+
ratio = (width / height)
|
73 |
+
scale = 1
|
74 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
75 |
+
scale += 1
|
76 |
+
scale -= 1
|
77 |
+
new_w = int(scale * 336)
|
78 |
+
new_h = int(new_w / ratio)
|
79 |
+
|
80 |
+
img = transforms.functional.resize(img, [new_h, new_w],)
|
81 |
+
img = padding_336(img, 336)
|
82 |
+
width, height = img.size
|
83 |
+
if trans:
|
84 |
+
img = img.transpose(Image.TRANSPOSE)
|
85 |
+
|
86 |
+
return img
|
87 |
+
|
88 |
+
|
89 |
+
def get_seq_frames(total_num_frames, desired_num_frames, start=None, end=None):
|
90 |
+
if start is None:
|
91 |
+
assert end is None
|
92 |
+
start, end = 0, total_num_frames
|
93 |
+
print(f"{start=}, {end=}")
|
94 |
+
desired_num_frames -= 2
|
95 |
+
end = min(total_num_frames, end)
|
96 |
+
start = max(start, 0)
|
97 |
+
seg_size = float((end - start)) / desired_num_frames
|
98 |
+
seq = [start]
|
99 |
+
|
100 |
+
for i in range(desired_num_frames):
|
101 |
+
s = int(np.round(seg_size * i))
|
102 |
+
e = int(np.round(seg_size * (i + 1)))
|
103 |
+
seq.append(min(int(start + (s + e) // 2), total_num_frames-1))
|
104 |
+
return seq + [end-1]
|
105 |
+
|
106 |
+
|
107 |
+
def model_gen(model, text, images, need_bos=True, hd_num=25, max_new_token=2048, beam=3, do_sample=False):
|
108 |
+
pt1 = 0
|
109 |
+
embeds = []
|
110 |
+
im_mask = []
|
111 |
+
if images is None:
|
112 |
+
images = []
|
113 |
+
images_loc = []
|
114 |
+
else:
|
115 |
+
images = [images]
|
116 |
+
images_loc = [0]
|
117 |
+
for i, pts in enumerate(images_loc + [len(text)]):
|
118 |
+
subtext = text[pt1:pts]
|
119 |
+
if need_bos or len(subtext) > 0:
|
120 |
+
text_embeds = model.encode_text(
|
121 |
+
subtext, add_special_tokens=need_bos)
|
122 |
+
embeds.append(text_embeds)
|
123 |
+
im_mask.append(torch.zeros(text_embeds.shape[:2]).cuda())
|
124 |
+
need_bos = False
|
125 |
+
if i < len(images):
|
126 |
+
try:
|
127 |
+
image = Image.open(images[i]).convert('RGB')
|
128 |
+
except:
|
129 |
+
image = images[i].convert('RGB')
|
130 |
+
|
131 |
+
image = HD_transform(image, hd_num=hd_num)
|
132 |
+
image = model.vis_processor(image).unsqueeze(0).cuda()
|
133 |
+
image_embeds = model.encode_img(image)
|
134 |
+
print(image_embeds.shape)
|
135 |
+
embeds.append(image_embeds)
|
136 |
+
im_mask.append(torch.ones(image_embeds.shape[:2]).cuda())
|
137 |
+
pt1 = pts
|
138 |
+
embeds = torch.cat(embeds, dim=1)
|
139 |
+
im_mask = torch.cat(im_mask, dim=1)
|
140 |
+
im_mask = im_mask.bool()
|
141 |
+
outputs = model.generate(inputs_embeds=embeds, im_mask=im_mask,
|
142 |
+
temperature=1.0, max_new_tokens=max_new_token, num_beams=beam,
|
143 |
+
do_sample=False, repetition_penalty=1.00)
|
144 |
+
|
145 |
+
output_token = outputs[0]
|
146 |
+
if output_token[0] == 0 or output_token[0] == 1:
|
147 |
+
output_token = output_token[1:]
|
148 |
+
output_text = model.tokenizer.decode(
|
149 |
+
output_token, add_special_tokens=False)
|
150 |
+
output_text = output_text.split('[UNUSED_TOKEN_145]')[0].strip()
|
151 |
+
return output_text
|
152 |
+
|
153 |
+
|
154 |
+
def img_process(imgs):
|
155 |
+
new_w = 0
|
156 |
+
new_h = 0
|
157 |
+
for im in imgs:
|
158 |
+
w, h = im.size
|
159 |
+
new_w = max(new_w, w)
|
160 |
+
new_h += h + 20
|
161 |
+
pad = max(new_w // 4, 100)
|
162 |
+
new_w += 20
|
163 |
+
new_h += 20
|
164 |
+
font = ImageFont.truetype("SimHei.ttf", pad // 5)
|
165 |
+
new_img = Image.new('RGB', (new_w + pad, new_h), 'white')
|
166 |
+
draw = ImageDraw.Draw(new_img)
|
167 |
+
curr_h = 10
|
168 |
+
for idx, im in enumerate(imgs):
|
169 |
+
w, h = im.size
|
170 |
+
new_img.paste(im, (pad, curr_h))
|
171 |
+
draw.text((0, curr_h + h // 2),
|
172 |
+
f'<IMAGE {idx}>', font=font, fill='black')
|
173 |
+
if idx + 1 < len(imgs):
|
174 |
+
draw.line([(0, curr_h + h + 10), (new_w+pad,
|
175 |
+
curr_h + h + 10)], fill='black', width=2)
|
176 |
+
curr_h += h + 20
|
177 |
+
return new_img
|
178 |
+
|
179 |
+
|
180 |
+
def load_quota_video(vis_path, start=None, end=None):
|
181 |
+
vr = VideoReader(vis_path)
|
182 |
+
total_frame_num = len(vr)
|
183 |
+
fps = vr.get_avg_fps()
|
184 |
+
if start is not None:
|
185 |
+
assert end is not None
|
186 |
+
start_frame = int(start * fps)
|
187 |
+
end_frame = min(int(end * fps), total_frame_num)
|
188 |
+
else:
|
189 |
+
start_frame = 0
|
190 |
+
end_frame = total_frame_num
|
191 |
+
interval = int(2 * fps)
|
192 |
+
frame_idx = list(range(start_frame, end_frame, interval))
|
193 |
+
img_array = vr.get_batch(frame_idx).asnumpy()
|
194 |
+
num_frm, H, W, _ = img_array.shape
|
195 |
+
img_array = img_array.reshape(
|
196 |
+
(1, num_frm, img_array.shape[-3], img_array.shape[-2], img_array.shape[-1]))
|
197 |
+
clip_imgs = []
|
198 |
+
for j in range(num_frm):
|
199 |
+
clip_imgs.append(Image.fromarray(img_array[0, j]))
|
200 |
+
return clip_imgs
|
201 |
+
|
202 |
+
|
203 |
+
def resize_image(image_path, max_size=1024):
|
204 |
+
with Image.open(image_path) as img:
|
205 |
+
width, height = img.size
|
206 |
+
if width > max_size or height > max_size:
|
207 |
+
if width > height:
|
208 |
+
new_width = max_size
|
209 |
+
new_height = int(height * (max_size / width))
|
210 |
+
else:
|
211 |
+
new_height = max_size
|
212 |
+
new_width = int(width * (max_size / height))
|
213 |
+
else:
|
214 |
+
new_width = width
|
215 |
+
new_height = height
|
216 |
+
resized_img = img.resize((new_width, new_height))
|
217 |
+
print(f"resized_img_size: {resized_img.size}")
|
218 |
+
return resized_img
|
219 |
+
|
220 |
+
|
221 |
+
def encode_resized_image(image_path, max_size=1024):
|
222 |
+
resized_img = resize_image(image_path, max_size)
|
223 |
+
try:
|
224 |
+
with BytesIO() as buffer:
|
225 |
+
resized_img.save(buffer, format="JPEG")
|
226 |
+
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
227 |
+
except:
|
228 |
+
with BytesIO() as buffer:
|
229 |
+
rgb_img = resized_img.convert('RGB')
|
230 |
+
rgb_img.save(buffer, format="JPEG")
|
231 |
+
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
232 |
|
233 |
|
234 |
@spaces.GPU(duration=60)
|
235 |
+
def generate_slidingcaptioning(video_path):
|
236 |
+
imgs = load_quota_video(video_path)
|
237 |
+
q = 'This is the first frame of a video, describe it in detail.'
|
238 |
+
query = f'[UNUSED_TOKEN_146]user\n{q}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
|
239 |
+
img = imgs[0]
|
240 |
+
with torch.cuda.amp.autocast():
|
241 |
+
response = model_gen(model, query, img, hd_num=9)
|
242 |
+
print(response)
|
243 |
+
responses = [response]
|
244 |
+
images = [img]
|
245 |
+
for idx in range(len(imgs)-1):
|
246 |
+
image1 = imgs[idx]
|
247 |
+
image2 = imgs[idx+1]
|
248 |
+
prompt = "Here are the Video frame {} at {}.00 Second(s) and Video frame {} at {}.00 Second(s) of a video, describe what happend between them. What happend before is: {}".format(
|
249 |
+
idx, int(idx*2), idx+1, int((idx+1)*2), response)
|
250 |
+
width, height = image1.size
|
251 |
+
new_img = Image.new('RGB', (width, 2*height+50), 'white')
|
252 |
+
new_img.paste(image1, (0, 0))
|
253 |
+
new_img.paste(image2, (0, height+50))
|
254 |
+
query = f'[UNUSED_TOKEN_146]user\n{prompt}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
|
255 |
+
with torch.cuda.amp.autocast():
|
256 |
+
response = model_gen(model, query, new_img, hd_num=9)
|
257 |
+
responses.append(response)
|
258 |
+
images.append(new_img)
|
259 |
+
prompt = 'Summarize the following per frame descriptions:\n'
|
260 |
+
for idx, txt in enumerate(responses):
|
261 |
+
prompt += 'Video frame {} at {}.00 Second(s) description: {}\n'.format(
|
262 |
+
idx+1, idx*2, txt)
|
263 |
+
query = f'[UNUSED_TOKEN_146]user\n{prompt}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
|
264 |
+
print(query)
|
265 |
+
with torch.cuda.amp.autocast():
|
266 |
+
summ = model_gen(model, query, None, hd_num=16)
|
267 |
+
print(summ)
|
268 |
+
return summ
|
269 |
+
|
270 |
|
271 |
@spaces.GPU(duration=60)
|
272 |
+
def generate_fastcaptioning(video_path):
|
273 |
+
q = 'Here are a few key frames of a video, discribe this video in detail.'
|
274 |
+
query = f'[UNUSED_TOKEN_146]user\n{q}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
|
275 |
+
imgs = load_quota_video(video_path, start=start, end=end)
|
276 |
+
img = img_process(imgs)
|
277 |
+
with torch.cuda.amp.autocast():
|
278 |
+
response = model_gen(model, query, img, hd_num=16,
|
279 |
+
do_sample=False, beam=3)
|
280 |
+
return response
|
281 |
+
|
282 |
|
283 |
@spaces.GPU(duration=60)
|
284 |
def generate_promptrecaptioning(text):
|
285 |
+
q = f'Translate this brief generation prompt into a detailed caption: {text}'
|
286 |
+
query = f'[UNUSED_TOKEN_146]user\n{q}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
|
287 |
+
with torch.cuda.amp.autocast():
|
288 |
+
response = model_gen(model, query, None)
|
289 |
+
return response
|
290 |
+
|
291 |
+
|
292 |
def save_video_to_local(video_path):
|
293 |
filename = os.path.join('temp', next(
|
294 |
tempfile._get_candidate_names()) + '.mp4')
|
295 |
shutil.copyfile(video_path, filename)
|
296 |
return filename
|
297 |
|
298 |
+
|
299 |
with gr.Blocks(title='ShareCaptioner-Video', theme=gr.themes.Default(), css=block_css) as demo:
|
300 |
gr.Markdown(title_markdown)
|
301 |
state = gr.State()
|
|
|
303 |
first_run = gr.State()
|
304 |
|
305 |
with gr.Row():
|
306 |
+
gr.Markdown("### The ShareCaptioner-Video is a Four-in-One exceptional video captioning model with the following capabilities:\n1. Fast captioning, 2. Sliding Captioning, 3. Clip Summarizing, 4. Prompt Re-Captioning")
|
307 |
with gr.Row():
|
308 |
gr.Markdown("(THE DEMO OF \"Clip Summarizing\" IS COMING SOON...)")
|
309 |
with gr.Row():
|
310 |
with gr.Column(scale=6):
|
311 |
with gr.Row():
|
312 |
video = gr.Video(label="Input Video")
|
|
|
313 |
with gr.Row():
|
314 |
textbox = gr.Textbox(
|
315 |
show_label=False, placeholder="Input Text", container=False
|
|
|
334 |
)
|
335 |
gr.Markdown(learn_more_markdown)
|
336 |
|
337 |
+
submit_btn_sc.click(generate_slidingcaptioning, [video], [textbox_out])
|
338 |
submit_btn_fc.click(generate_fastcaptioning, [video], [textbox_out])
|
339 |
submit_btn_pr.click(generate_promptrecaptioning, [textbox], [textbox_out])
|
340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
demo.launch()
|