Spaces:
Running
on
Zero
Running
on
Zero
IsshikiHugh
commited on
Commit
Β·
fc9d64f
1
Parent(s):
4d80825
feat: init
Browse files- .gitignore +1 -0
- README.md +5 -4
- app.py +5 -6
- app/__init__.py +0 -0
- app/demo.py +310 -0
- app/entry.py +19 -0
- app/env.py +23 -0
- app/gui.py +32 -0
- app/handler.py +97 -0
- requirements.txt +46 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.DS_Store
|
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
2 |
-
title: GV
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: GV-HMR
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
+
python_version: 3.10
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
---
|
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
import
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
from app.env import prepare_env
|
3 |
|
4 |
+
if __name__ == '__main__':
|
5 |
+
prepare_env()
|
6 |
+
os.system('python app/entry.py')
|
|
|
|
app/__init__.py
ADDED
File without changes
|
app/demo.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
import numpy as np
|
5 |
+
import argparse
|
6 |
+
from hmr4d.utils.pylogger import Log
|
7 |
+
import hydra
|
8 |
+
from hydra import initialize_config_module, compose
|
9 |
+
from pathlib import Path
|
10 |
+
from pytorch3d.transforms import quaternion_to_matrix
|
11 |
+
|
12 |
+
from hmr4d.configs import register_store_gvhmr
|
13 |
+
from hmr4d.utils.video_io_utils import (
|
14 |
+
get_video_lwh,
|
15 |
+
read_video_np,
|
16 |
+
save_video,
|
17 |
+
merge_videos_horizontal,
|
18 |
+
get_writer,
|
19 |
+
get_video_reader,
|
20 |
+
)
|
21 |
+
from hmr4d.utils.vis.cv2_utils import draw_bbx_xyxy_on_image_batch, draw_coco17_skeleton_batch
|
22 |
+
|
23 |
+
from hmr4d.utils.preproc import Tracker, Extractor, VitPoseExtractor, SLAMModel
|
24 |
+
|
25 |
+
from hmr4d.utils.geo.hmr_cam import get_bbx_xys_from_xyxy, estimate_K, convert_K_to_K4, create_camera_sensor
|
26 |
+
from hmr4d.utils.geo_transform import compute_cam_angvel
|
27 |
+
from hmr4d.model.gvhmr.gvhmr_pl_demo import DemoPL
|
28 |
+
from hmr4d.utils.net_utils import detach_to_cpu, to_cuda
|
29 |
+
from hmr4d.utils.smplx_utils import make_smplx
|
30 |
+
from hmr4d.utils.vis.renderer import Renderer, get_global_cameras_static, get_ground_params_from_points
|
31 |
+
from tqdm import tqdm
|
32 |
+
from hmr4d.utils.geo_transform import apply_T_on_points, compute_T_ayfz2ay
|
33 |
+
from einops import einsum, rearrange
|
34 |
+
|
35 |
+
|
36 |
+
CRF = 23 # 17 is lossless, every +6 halves the mp4 size
|
37 |
+
|
38 |
+
|
39 |
+
def parse_args_to_cfg():
|
40 |
+
# Put all args to cfg
|
41 |
+
parser = argparse.ArgumentParser()
|
42 |
+
parser.add_argument("--video", type=str, default="inputs/demo/dance_3.mp4")
|
43 |
+
parser.add_argument("--output_root", type=str, default=None, help="by default to outputs/demo")
|
44 |
+
parser.add_argument("-s", "--static_cam", action="store_true", help="If true, skip DPVO")
|
45 |
+
parser.add_argument("--verbose", action="store_true", help="If true, draw intermediate results")
|
46 |
+
args = parser.parse_args()
|
47 |
+
|
48 |
+
# Input
|
49 |
+
video_path = Path(args.video)
|
50 |
+
assert video_path.exists(), f"Video not found at {video_path}"
|
51 |
+
length, width, height = get_video_lwh(video_path)
|
52 |
+
Log.info(f"[Input]: {video_path}")
|
53 |
+
Log.info(f"(L, W, H) = ({length}, {width}, {height})")
|
54 |
+
# Cfg
|
55 |
+
with initialize_config_module(version_base="1.3", config_module=f"hmr4d.configs"):
|
56 |
+
overrides = [
|
57 |
+
f"video_name={video_path.stem}",
|
58 |
+
f"static_cam={args.static_cam}",
|
59 |
+
f"verbose={args.verbose}",
|
60 |
+
]
|
61 |
+
|
62 |
+
# Allow to change output root
|
63 |
+
if args.output_root is not None:
|
64 |
+
overrides.append(f"output_root={args.output_root}")
|
65 |
+
register_store_gvhmr()
|
66 |
+
cfg = compose(config_name="demo", overrides=overrides)
|
67 |
+
|
68 |
+
# Output
|
69 |
+
Log.info(f"[Output Dir]: {cfg.output_dir}")
|
70 |
+
Path(cfg.output_dir).mkdir(parents=True, exist_ok=True)
|
71 |
+
Path(cfg.preprocess_dir).mkdir(parents=True, exist_ok=True)
|
72 |
+
|
73 |
+
# Copy raw-input-video to video_path
|
74 |
+
Log.info(f"[Copy Video] {video_path} -> {cfg.video_path}")
|
75 |
+
if not Path(cfg.video_path).exists() or get_video_lwh(video_path)[0] != get_video_lwh(cfg.video_path)[0]:
|
76 |
+
reader = get_video_reader(video_path)
|
77 |
+
writer = get_writer(cfg.video_path, fps=30, crf=CRF)
|
78 |
+
for img in tqdm(reader, total=get_video_lwh(video_path)[0], desc=f"Copy"):
|
79 |
+
writer.write_frame(img)
|
80 |
+
writer.close()
|
81 |
+
reader.close()
|
82 |
+
|
83 |
+
return cfg
|
84 |
+
|
85 |
+
|
86 |
+
@torch.no_grad()
|
87 |
+
def run_preprocess(cfg):
|
88 |
+
Log.info(f"[Preprocess] Start!")
|
89 |
+
tic = Log.time()
|
90 |
+
video_path = cfg.video_path
|
91 |
+
paths = cfg.paths
|
92 |
+
static_cam = cfg.static_cam
|
93 |
+
verbose = cfg.verbose
|
94 |
+
|
95 |
+
# Get bbx tracking result
|
96 |
+
if not Path(paths.bbx).exists():
|
97 |
+
tracker = Tracker()
|
98 |
+
bbx_xyxy = tracker.get_one_track(video_path).float() # (L, 4)
|
99 |
+
bbx_xys = get_bbx_xys_from_xyxy(bbx_xyxy, base_enlarge=1.2).float() # (L, 3) apply aspect ratio and enlarge
|
100 |
+
torch.save({"bbx_xyxy": bbx_xyxy, "bbx_xys": bbx_xys}, paths.bbx)
|
101 |
+
del tracker
|
102 |
+
else:
|
103 |
+
bbx_xys = torch.load(paths.bbx)["bbx_xys"]
|
104 |
+
Log.info(f"[Preprocess] bbx (xyxy, xys) from {paths.bbx}")
|
105 |
+
if verbose:
|
106 |
+
video = read_video_np(video_path)
|
107 |
+
bbx_xyxy = torch.load(paths.bbx)["bbx_xyxy"]
|
108 |
+
video_overlay = draw_bbx_xyxy_on_image_batch(bbx_xyxy, video)
|
109 |
+
save_video(video_overlay, cfg.paths.bbx_xyxy_video_overlay)
|
110 |
+
|
111 |
+
# Get VitPose
|
112 |
+
if not Path(paths.vitpose).exists():
|
113 |
+
vitpose_extractor = VitPoseExtractor()
|
114 |
+
vitpose = vitpose_extractor.extract(video_path, bbx_xys)
|
115 |
+
torch.save(vitpose, paths.vitpose)
|
116 |
+
del vitpose_extractor
|
117 |
+
else:
|
118 |
+
vitpose = torch.load(paths.vitpose)
|
119 |
+
Log.info(f"[Preprocess] vitpose from {paths.vitpose}")
|
120 |
+
if verbose:
|
121 |
+
video = read_video_np(video_path)
|
122 |
+
video_overlay = draw_coco17_skeleton_batch(video, vitpose, 0.5)
|
123 |
+
save_video(video_overlay, paths.vitpose_video_overlay)
|
124 |
+
|
125 |
+
# Get vit features
|
126 |
+
if not Path(paths.vit_features).exists():
|
127 |
+
extractor = Extractor()
|
128 |
+
vit_features = extractor.extract_video_features(video_path, bbx_xys)
|
129 |
+
torch.save(vit_features, paths.vit_features)
|
130 |
+
del extractor
|
131 |
+
else:
|
132 |
+
Log.info(f"[Preprocess] vit_features from {paths.vit_features}")
|
133 |
+
|
134 |
+
# Get DPVO results
|
135 |
+
if not static_cam: # use slam to get cam rotation
|
136 |
+
if not Path(paths.slam).exists():
|
137 |
+
length, width, height = get_video_lwh(cfg.video_path)
|
138 |
+
K_fullimg = estimate_K(width, height)
|
139 |
+
intrinsics = convert_K_to_K4(K_fullimg)
|
140 |
+
slam = SLAMModel(video_path, width, height, intrinsics, buffer=4000, resize=0.5)
|
141 |
+
bar = tqdm(total=length, desc="DPVO")
|
142 |
+
while True:
|
143 |
+
ret = slam.track()
|
144 |
+
if ret:
|
145 |
+
bar.update()
|
146 |
+
else:
|
147 |
+
break
|
148 |
+
slam_results = slam.process() # (L, 7), numpy
|
149 |
+
torch.save(slam_results, paths.slam)
|
150 |
+
else:
|
151 |
+
Log.info(f"[Preprocess] slam results from {paths.slam}")
|
152 |
+
|
153 |
+
Log.info(f"[Preprocess] End. Time elapsed: {Log.time()-tic:.2f}s")
|
154 |
+
|
155 |
+
|
156 |
+
def load_data_dict(cfg):
|
157 |
+
paths = cfg.paths
|
158 |
+
length, width, height = get_video_lwh(cfg.video_path)
|
159 |
+
if cfg.static_cam:
|
160 |
+
R_w2c = torch.eye(3).repeat(length, 1, 1)
|
161 |
+
else:
|
162 |
+
traj = torch.load(cfg.paths.slam)
|
163 |
+
traj_quat = torch.from_numpy(traj[:, [6, 3, 4, 5]])
|
164 |
+
R_w2c = quaternion_to_matrix(traj_quat).mT
|
165 |
+
K_fullimg = estimate_K(width, height).repeat(length, 1, 1)
|
166 |
+
# K_fullimg = create_camera_sensor(width, height, 26)[2].repeat(length, 1, 1)
|
167 |
+
|
168 |
+
data = {
|
169 |
+
"length": torch.tensor(length),
|
170 |
+
"bbx_xys": torch.load(paths.bbx)["bbx_xys"],
|
171 |
+
"kp2d": torch.load(paths.vitpose),
|
172 |
+
"K_fullimg": K_fullimg,
|
173 |
+
"cam_angvel": compute_cam_angvel(R_w2c),
|
174 |
+
"f_imgseq": torch.load(paths.vit_features),
|
175 |
+
}
|
176 |
+
return data
|
177 |
+
|
178 |
+
|
179 |
+
def render_incam(cfg):
|
180 |
+
incam_video_path = Path(cfg.paths.incam_video)
|
181 |
+
if incam_video_path.exists():
|
182 |
+
Log.info(f"[Render Incam] Video already exists at {incam_video_path}")
|
183 |
+
return
|
184 |
+
|
185 |
+
pred = torch.load(cfg.paths.hmr4d_results)
|
186 |
+
smplx = make_smplx("supermotion").cuda()
|
187 |
+
smplx2smpl = torch.load("hmr4d/utils/body_model/smplx2smpl_sparse.pt").cuda()
|
188 |
+
faces_smpl = make_smplx("smpl").faces
|
189 |
+
|
190 |
+
# smpl
|
191 |
+
smplx_out = smplx(**to_cuda(pred["smpl_params_incam"]))
|
192 |
+
pred_c_verts = torch.stack([torch.matmul(smplx2smpl, v_) for v_ in smplx_out.vertices])
|
193 |
+
|
194 |
+
# -- rendering code -- #
|
195 |
+
video_path = cfg.video_path
|
196 |
+
length, width, height = get_video_lwh(video_path)
|
197 |
+
K = pred["K_fullimg"][0]
|
198 |
+
|
199 |
+
# renderer
|
200 |
+
renderer = Renderer(width, height, device="cuda", faces=faces_smpl, K=K)
|
201 |
+
reader = get_video_reader(video_path) # (F, H, W, 3), uint8, numpy
|
202 |
+
bbx_xys_render = torch.load(cfg.paths.bbx)["bbx_xys"]
|
203 |
+
|
204 |
+
# -- render mesh -- #
|
205 |
+
verts_incam = pred_c_verts
|
206 |
+
writer = get_writer(incam_video_path, fps=30, crf=CRF)
|
207 |
+
for i, img_raw in tqdm(enumerate(reader), total=get_video_lwh(video_path)[0], desc=f"Rendering Incam"):
|
208 |
+
img = renderer.render_mesh(verts_incam[i].cuda(), img_raw, [0.8, 0.8, 0.8])
|
209 |
+
|
210 |
+
# # bbx
|
211 |
+
# bbx_xys_ = bbx_xys_render[i].cpu().numpy()
|
212 |
+
# lu_point = (bbx_xys_[:2] - bbx_xys_[2:] / 2).astype(int)
|
213 |
+
# rd_point = (bbx_xys_[:2] + bbx_xys_[2:] / 2).astype(int)
|
214 |
+
# img = cv2.rectangle(img, lu_point, rd_point, (255, 178, 102), 2)
|
215 |
+
|
216 |
+
writer.write_frame(img)
|
217 |
+
writer.close()
|
218 |
+
reader.close()
|
219 |
+
|
220 |
+
|
221 |
+
def render_global(cfg):
|
222 |
+
global_video_path = Path(cfg.paths.global_video)
|
223 |
+
if global_video_path.exists():
|
224 |
+
Log.info(f"[Render Global] Video already exists at {global_video_path}")
|
225 |
+
return
|
226 |
+
|
227 |
+
debug_cam = False
|
228 |
+
pred = torch.load(cfg.paths.hmr4d_results)
|
229 |
+
smplx = make_smplx("supermotion").cuda()
|
230 |
+
smplx2smpl = torch.load("hmr4d/utils/body_model/smplx2smpl_sparse.pt").cuda()
|
231 |
+
faces_smpl = make_smplx("smpl").faces
|
232 |
+
J_regressor = torch.load("hmr4d/utils/body_model/smpl_neutral_J_regressor.pt").cuda()
|
233 |
+
|
234 |
+
# smpl
|
235 |
+
smplx_out = smplx(**to_cuda(pred["smpl_params_global"]))
|
236 |
+
pred_ay_verts = torch.stack([torch.matmul(smplx2smpl, v_) for v_ in smplx_out.vertices])
|
237 |
+
|
238 |
+
def move_to_start_point_face_z(verts):
|
239 |
+
"XZ to origin, Start from the ground, Face-Z"
|
240 |
+
# position
|
241 |
+
verts = verts.clone() # (L, V, 3)
|
242 |
+
offset = einsum(J_regressor, verts[0], "j v, v i -> j i")[0] # (3)
|
243 |
+
offset[1] = verts[:, :, [1]].min()
|
244 |
+
verts = verts - offset
|
245 |
+
# face direction
|
246 |
+
T_ay2ayfz = compute_T_ayfz2ay(einsum(J_regressor, verts[[0]], "j v, l v i -> l j i"), inverse=True)
|
247 |
+
verts = apply_T_on_points(verts, T_ay2ayfz)
|
248 |
+
return verts
|
249 |
+
|
250 |
+
verts_glob = move_to_start_point_face_z(pred_ay_verts)
|
251 |
+
joints_glob = einsum(J_regressor, verts_glob, "j v, l v i -> l j i") # (L, J, 3)
|
252 |
+
global_R, global_T, global_lights = get_global_cameras_static(
|
253 |
+
verts_glob.cpu(),
|
254 |
+
beta=2.0,
|
255 |
+
cam_height_degree=20,
|
256 |
+
target_center_height=1.0,
|
257 |
+
)
|
258 |
+
|
259 |
+
# -- rendering code -- #
|
260 |
+
video_path = cfg.video_path
|
261 |
+
length, width, height = get_video_lwh(video_path)
|
262 |
+
_, _, K = create_camera_sensor(width, height, 24) # render as 24mm lens
|
263 |
+
|
264 |
+
# renderer
|
265 |
+
renderer = Renderer(width, height, device="cuda", faces=faces_smpl, K=K)
|
266 |
+
# renderer = Renderer(width, height, device="cuda", faces=faces_smpl, K=K, bin_size=0)
|
267 |
+
|
268 |
+
# -- render mesh -- #
|
269 |
+
scale, cx, cz = get_ground_params_from_points(joints_glob[:, 0], verts_glob)
|
270 |
+
renderer.set_ground(scale * 1.5, cx, cz)
|
271 |
+
color = torch.ones(3).float().cuda() * 0.8
|
272 |
+
|
273 |
+
render_length = length if not debug_cam else 8
|
274 |
+
writer = get_writer(global_video_path, fps=30, crf=CRF)
|
275 |
+
for i in tqdm(range(render_length), desc=f"Rendering Global"):
|
276 |
+
cameras = renderer.create_camera(global_R[i], global_T[i])
|
277 |
+
img = renderer.render_with_ground(verts_glob[[i]], color[None], cameras, global_lights)
|
278 |
+
writer.write_frame(img)
|
279 |
+
writer.close()
|
280 |
+
|
281 |
+
|
282 |
+
if __name__ == "__main__":
|
283 |
+
cfg = parse_args_to_cfg()
|
284 |
+
paths = cfg.paths
|
285 |
+
Log.info(f"[GPU]: {torch.cuda.get_device_name()}")
|
286 |
+
Log.info(f'[GPU]: {torch.cuda.get_device_properties("cuda")}')
|
287 |
+
|
288 |
+
# ===== Preprocess and save to disk ===== #
|
289 |
+
run_preprocess(cfg)
|
290 |
+
data = load_data_dict(cfg)
|
291 |
+
|
292 |
+
# ===== HMR4D ===== #
|
293 |
+
if not Path(paths.hmr4d_results).exists():
|
294 |
+
Log.info("[HMR4D] Predicting")
|
295 |
+
model: DemoPL = hydra.utils.instantiate(cfg.model, _recursive_=False)
|
296 |
+
model.load_pretrained_model(cfg.ckpt_path)
|
297 |
+
model = model.eval().cuda()
|
298 |
+
tic = Log.sync_time()
|
299 |
+
pred = model.predict(data, static_cam=cfg.static_cam)
|
300 |
+
pred = detach_to_cpu(pred)
|
301 |
+
data_time = data["length"] / 30
|
302 |
+
Log.info(f"[HMR4D] Elapsed: {Log.sync_time() - tic:.2f}s for data-length={data_time:.1f}s")
|
303 |
+
torch.save(pred, paths.hmr4d_results)
|
304 |
+
|
305 |
+
# ===== Render ===== #
|
306 |
+
render_incam(cfg)
|
307 |
+
render_global(cfg)
|
308 |
+
if not Path(paths.incam_global_horiz_video).exists():
|
309 |
+
Log.info("[Merge Videos]")
|
310 |
+
merge_videos_horizontal([paths.incam_video, paths.global_video], paths.incam_global_horiz_video)
|
app/entry.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from app.env import prepare_env
|
4 |
+
from app.gui import get_inputs_components, get_outputs_components, get_examples
|
5 |
+
from app.handler import handler
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == '__main__':
|
9 |
+
prepare_env()
|
10 |
+
|
11 |
+
demo = gr.Interface(
|
12 |
+
fn = handler,
|
13 |
+
inputs = get_inputs_components(),
|
14 |
+
outputs = get_outputs_components(),
|
15 |
+
# examples = get_examples(),
|
16 |
+
allow_flagging = 'never',
|
17 |
+
)
|
18 |
+
|
19 |
+
demo.launch()
|
app/env.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
REPO_ROOT = str(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
def run_cmds(cmds):
|
6 |
+
cmds = cmds.split('\n')
|
7 |
+
for cmd in cmds:
|
8 |
+
if len(cmd) == 0:
|
9 |
+
continue
|
10 |
+
os.system(cmd)
|
11 |
+
|
12 |
+
|
13 |
+
def prepare_env():
|
14 |
+
os.chdir(REPO_ROOT)
|
15 |
+
run_cmds(
|
16 |
+
f'''
|
17 |
+
git clone https://github.com/zju3dv/GVHMR --recursive
|
18 |
+
pip install -e .
|
19 |
+
mkdir inputs
|
20 |
+
mkdir outputs
|
21 |
+
ln -s {REPO_ROOT}/GVHMR/tools ./app/
|
22 |
+
'''
|
23 |
+
)
|
app/gui.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
def get_inputs_components():
|
5 |
+
return [
|
6 |
+
gr.Video(
|
7 |
+
label = 'INPUT VIDEO',
|
8 |
+
show_label = True,
|
9 |
+
),
|
10 |
+
gr.Radio(
|
11 |
+
choices = ['Static Camera', 'Dynamic Camera'],
|
12 |
+
label = 'Camera Status',
|
13 |
+
info = 'If the camera is static, DPVO will be skipped.'),
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def get_outputs_components():
|
18 |
+
return [
|
19 |
+
gr.PlayableVideo(
|
20 |
+
label = 'INCAM RESULT',
|
21 |
+
show_label = True,
|
22 |
+
),
|
23 |
+
gr.PlayableVideo(
|
24 |
+
label = 'GLOBAL RESULT',
|
25 |
+
show_label = True,
|
26 |
+
),
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
def get_examples():
|
31 |
+
# TODO: Add examples.
|
32 |
+
return []
|
app/handler.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from .demo import *
|
5 |
+
|
6 |
+
|
7 |
+
def prepare_cfg(is_static:bool, video_path:str, demo_id:str):
|
8 |
+
output_root = Path(video_path).parent / 'output'
|
9 |
+
output_root = str(output_root.absolute())
|
10 |
+
|
11 |
+
# Cfg
|
12 |
+
with initialize_config_module(version_base="1.3", config_module=f"hmr4d.configs"):
|
13 |
+
overrides = [
|
14 |
+
f"video_name={demo_id}",
|
15 |
+
f"static_cam={is_static}",
|
16 |
+
f"verbose={False}",
|
17 |
+
]
|
18 |
+
|
19 |
+
# Allow to change output root
|
20 |
+
overrides.append(f"output_root={output_root}")
|
21 |
+
register_store_gvhmr()
|
22 |
+
cfg = compose(config_name="demo", overrides=overrides)
|
23 |
+
|
24 |
+
# Output
|
25 |
+
Log.info(f"[Output Dir]: {cfg.output_dir}")
|
26 |
+
Path(cfg.output_dir).mkdir(parents=True, exist_ok=True)
|
27 |
+
Path(cfg.preprocess_dir).mkdir(parents=True, exist_ok=True)
|
28 |
+
|
29 |
+
# Copy raw-input-video to video_path
|
30 |
+
Log.info(f"[Copy Video] {video_path} -> {cfg.video_path}")
|
31 |
+
if not Path(cfg.video_path).exists() or get_video_lwh(video_path)[0] != get_video_lwh(cfg.video_path)[0]:
|
32 |
+
reader = get_video_reader(video_path)
|
33 |
+
writer = get_writer(cfg.video_path, fps=30, crf=CRF)
|
34 |
+
for img in tqdm(reader, total=get_video_lwh(video_path)[0], desc=f"Copy"):
|
35 |
+
writer.write_frame(img)
|
36 |
+
writer.close()
|
37 |
+
reader.close()
|
38 |
+
|
39 |
+
return cfg
|
40 |
+
|
41 |
+
|
42 |
+
@spaces.GPU(duration=120)
|
43 |
+
def run_demo(cfg, progress):
|
44 |
+
paths = cfg.paths
|
45 |
+
Log.info(f"[GPU]: {torch.cuda.get_device_name()}")
|
46 |
+
Log.info(f'[GPU]: {torch.cuda.get_device_properties("cuda")}')
|
47 |
+
|
48 |
+
# ===== Preprocess and save to disk ===== #
|
49 |
+
run_preprocess(cfg)
|
50 |
+
data = load_data_dict(cfg)
|
51 |
+
|
52 |
+
# ===== HMR4D ===== #
|
53 |
+
if not Path(paths.hmr4d_results).exists():
|
54 |
+
Log.info("[HMR4D] Predicting")
|
55 |
+
model: DemoPL = hydra.utils.instantiate(cfg.model, _recursive_=False)
|
56 |
+
model.load_pretrained_model(cfg.ckpt_path)
|
57 |
+
model = model.eval().cuda()
|
58 |
+
tic = Log.sync_time()
|
59 |
+
pred = model.predict(data, static_cam=cfg.static_cam)
|
60 |
+
pred = detach_to_cpu(pred)
|
61 |
+
data_time = data["length"] / 30
|
62 |
+
Log.info(f"[HMR4D] Elapsed: {Log.sync_time() - tic:.2f}s for data-length={data_time:.1f}s")
|
63 |
+
torch.save(pred, paths.hmr4d_results)
|
64 |
+
|
65 |
+
# ===== Render ===== #
|
66 |
+
render_incam(cfg)
|
67 |
+
render_global(cfg)
|
68 |
+
if not Path(paths.incam_global_horiz_video).exists():
|
69 |
+
Log.info("[Merge Videos]")
|
70 |
+
merge_videos_horizontal([paths.incam_video, paths.global_video], paths.incam_global_horiz_video)
|
71 |
+
|
72 |
+
return
|
73 |
+
|
74 |
+
def handler(cam_status, video_path, progress=gr.Progress()):
|
75 |
+
# 0. Check validity of inputs.
|
76 |
+
if cam_status not in ['Static Camera', 'Dynamic Camera']:
|
77 |
+
raise gr.Error('Please define the camera status!', duration=5)
|
78 |
+
if video_path is None or not Path(video_path).exists():
|
79 |
+
raise gr.Error('Can not find the video!', duration=5)
|
80 |
+
|
81 |
+
# 1. Deal with APP inputs.
|
82 |
+
is_static = cam_status == 'Static Camera'
|
83 |
+
Log.info(f"[Input Args] is_static: {is_static}")
|
84 |
+
Log.info(f"[Input Args] video_path: {video_path}")
|
85 |
+
|
86 |
+
# 2. Prepare cfg.
|
87 |
+
Log.info(f"[Video]: {video_path}")
|
88 |
+
demo_id = f'{Path(video_path).stem}_{np.random.randint(0, 1024):04d}'
|
89 |
+
cfg = prepare_cfg(is_static, video_path, demo_id)
|
90 |
+
|
91 |
+
# 3. Run demo.
|
92 |
+
run_demo(cfg, progress)
|
93 |
+
from ipdb import set_trace
|
94 |
+
set_trace()
|
95 |
+
|
96 |
+
# 4. Prepare the output.
|
97 |
+
return cfg.paths.incam_video, cfg.paths.global_video
|
requirements.txt
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PyTorch
|
2 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
3 |
+
torch==2.3.0+cu121
|
4 |
+
torchvision==0.18.0+cu121
|
5 |
+
timm==0.9.12 # For HMR2.0a feature extraction
|
6 |
+
|
7 |
+
# Lightning + Hydra
|
8 |
+
lightning==2.3.0
|
9 |
+
hydra-core==1.3
|
10 |
+
hydra-zen
|
11 |
+
hydra_colorlog
|
12 |
+
rich
|
13 |
+
|
14 |
+
# Common utilities
|
15 |
+
numpy==1.23.5
|
16 |
+
jupyter
|
17 |
+
matplotlib
|
18 |
+
ipdb
|
19 |
+
setuptools>=68.0
|
20 |
+
black
|
21 |
+
tensorboardX
|
22 |
+
opencv-python
|
23 |
+
ffmpeg-python
|
24 |
+
scikit-image
|
25 |
+
termcolor
|
26 |
+
einops
|
27 |
+
imageio==2.34.1
|
28 |
+
av # imageio[pyav], improved performance over imageio[ffmpeg]
|
29 |
+
joblib
|
30 |
+
|
31 |
+
# Diffusion
|
32 |
+
# diffusers[torch]==0.19.3
|
33 |
+
# transformers==4.31.0
|
34 |
+
|
35 |
+
# 3D-Vision
|
36 |
+
pytorch3d @ https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt230/pytorch3d-0.7.6-cp310-cp310-linux_x86_64.whl
|
37 |
+
trimesh
|
38 |
+
chumpy
|
39 |
+
smplx
|
40 |
+
# open3d==0.17.0
|
41 |
+
wis3d
|
42 |
+
|
43 |
+
# 2D-Pose
|
44 |
+
ultralytics==8.2.42 # YOLO
|
45 |
+
cython_bbox
|
46 |
+
lapx
|