Groove-GPT / app.py
LordFarquaad42's picture
added slider to let user determine how many samples to include
e53169e verified
raw
history blame
3.63 kB
import streamlit as st
import chromadb
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
from openai import OpenAI
# CONSTANTS
client = chromadb.PersistentClient(path="./chromadb/")
MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb
COLLECTION_NAME: str = "scheme"
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=MODEL_NAME)
schemer = client.get_collection(
name=COLLECTION_NAME,
embedding_function=EMBEDDING_FUNC,
)
DATA_AVAL: bool = schemer.count() > 0
APP_NAME: str = "Groove-GPT"
history = []
# INFO
st.title(APP_NAME)
st.header("What is Groovy-GPT?")
st.write("Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response.")
st.write("The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Troeger posted")
st.write("Data Avaliable: ", DATA_AVAL)
# INPUTS
user_question: str = st.text_area("Enter your groovy questions here")
remember_chat_history = st.toggle("Remember This Chat's History")
temperature = st.slider(label="Creativity of Model", min_value=0.0, max_value=2.0, value=0.8)
st.markdown("*High creativity will make it go crazy - keep it low*")
num_samples = st.slider(label="Amount of References to Give to Model", min_value=10, max=100, value=10)
st.markdown("*High amount will make it slow and expensive (and may not be relevant) - keep it low*")
access_key: str = st.text_input("Enter your gpt key here", type="password")
st.markdown("*For more information about how to get an access key, read [this article](https://platform.openai.com/api-keys). Make sure it has money in it ☠️*", unsafe_allow_html=True)
gpt_type: str = st.selectbox(label="Choose GPT Type", options=["gpt-3.5-turbo", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125", "gpt-4-32k-0613", "gpt-4-0613", "gpt-4-0125-preview"], index=0)
st.markdown("*For more information about GPT types, read [this article](https://platform.openai.com/docs/models).*", unsafe_allow_html=True)
st.divider()
# ON BUTTON CLICK
if st.button('Start Scheming') & (access_key != "") & (user_question != ""):
openai_client = OpenAI(api_key=access_key)
with st.spinner('Loading...'):
# Perform the Chromadb query.
results = schemer.query(
query_texts=[user_question],
n_results=num_samples,
include = ['documents']
)
documents = results["documents"]
response = openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an expert in functional programming in Scheme, with great knowledge on programming paradigms. You wish to teach the user everything you know about programming paradigms in scheme - so you explain everything thoroughly. Surround Latex equations in dollar signs as such Inline equation: $equation$ & Display equation: $$equation$$"},
{"role": "user", "content": user_question},
{"role": "assistant", "content": str(documents)},
{"role": "user", "content": f"Conversation History: {history}"}
],
temperature=temperature
)
history.append({user_question : response.choices[0].message.content} if remember_chat_history else {})
st.header("Prof Says ...")
st.write(response.choices[0].message.content)
else:
st.write("Please provide an input and (valid) API key")