Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import accelerate | |
# Load the model and tokenizer | |
model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0" | |
accelerator = accelerate.Accelerator() | |
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=False, device_map="auto", offload_folder="/tmp") | |
model = accelerator.prepare(model) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def generate_prompt(instruction, user_input): | |
""" | |
Generates a prompt for the model to ensure it responds with the intent in the same language as the input. | |
""" | |
return f""" | |
### Instruction: | |
{instruction} | |
### Input: | |
{user_input} | |
### Response: | |
""" | |
def get_model_response(user_input, instruction="Identify and summarize the core intent in the same language:"): | |
""" | |
Gets the model's response, ensuring it matches the input language and focuses on extracting a concise intent. | |
""" | |
input_text = generate_prompt(instruction, user_input) | |
inputs = tokenizer([input_text], return_tensors="pt") | |
with accelerator.distribute_inputs_to_prepared(model.device_map, inputs): | |
outputs = model.generate(**inputs, max_new_tokens=300, use_cache=True) | |
response = tokenizer.batch_decode(accelerator.gather(outputs))[0] | |
return response.split("### Response:")[-1].strip() | |
# Gradio interface | |
iface = gr.Interface( | |
fn=get_model_response, | |
inputs=[ | |
gr.inputs.Textbox(label="Input Text"), | |
gr.inputs.Textbox(label="Instruction", default="Identify and summarize the core intent in the same language:"), | |
], | |
outputs=gr.outputs.Textbox(label="Response"), | |
title="Intent Summarization", | |
description="Summarize the core intent of the input text in the same language.", | |
) | |
iface.launch() |