hcs
Add application file
d42ee1a
raw
history blame
1.66 kB
import torch
import torchvision.transforms as transforms
from PIL import Image
import Nets
def load_model(pretrained_dict, new):
model_dict = new.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict['state_dict'].items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
new.load_state_dict(model_dict)
# if torch.cuda.is_available():
# device = torch.device("cuda")
# else:
device = torch.device("cpu")
print("use cpu")
# model_ckpt_path = "./models/resnet18.pth"
model_ckpt_path = "https://huggingface.co/M4869/beauty_prediction_fpb5k/blob/main/resnet18.pth"
net = Nets.ResNet(block=Nets.BasicBlock, layers=[2, 2, 2, 2], num_classes=1).to(device)
load_model(torch.load(model_ckpt_path, encoding='latin1'), net)
net.eval()
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
def fun(img_path):
img = Image.open(img_path).convert('RGB')
img = transform(img)
with torch.no_grad():
img = img.unsqueeze(0).to(device)
output = net(img).squeeze(1).cpu().numpy()[0]
return output
# def main():
# for i in range(6, 7):
# img = Image.open("./data2/%d.jpg" % i).convert('RGB')
# img = transform(img)
#
# with torch.no_grad():
# img = img.unsqueeze(0).to(device)
# output = net(img).squeeze(1).cpu().numpy()[0]
# print(i, output * 20)
# if __name__ == '__main__':
# main()