hcs commited on
Commit
4afdb1d
·
1 Parent(s): 52e8824

Add application file

Browse files
Files changed (1) hide show
  1. core.py +1 -27
core.py CHANGED
@@ -16,27 +16,15 @@ def load_model(pretrained_dict, new):
16
  new.load_state_dict(model_dict)
17
 
18
 
19
- # if torch.cuda.is_available():
20
- # device = torch.device("cuda")
21
- # else:
22
  device = torch.device("cpu")
23
  print("use cpu")
24
 
25
- # model_ckpt_path = "./models/resnet18.pth"
26
- # model_ckpt_path = "https://huggingface.co/M4869/beauty_prediction_fpb5k/blob/main/resnet18.pth"
27
-
28
- # model_ckpt_path = "M4869/beauty_prediction_fpb5k"
29
- # model = torch.hub.load("huggingface/transformers", model_ckpt_path)
30
-
31
-
32
-
33
-
34
  # ans = hf_hub_download(repo_id="google/pegasus-xsum", filename="config.json")
35
  # /home/my/.cache/huggingface/hub/models--google--pegasus-xsum/snapshots/8d8ffc158a3bee9fbb03afacdfc347c823c5ec8b/config.json
36
 
37
  model_ckpt_path = hf_hub_download(repo_id="M4869/beauty_prediction_fpb5k", filename="resnet18.pth")
38
  net = Nets.ResNet(block=Nets.BasicBlock, layers=[2, 2, 2, 2], num_classes=1).to(device)
39
- load_model(torch.load(model_ckpt_path, encoding='latin1'), net)
40
  net.eval()
41
 
42
  transform = transforms.Compose([
@@ -53,17 +41,3 @@ def fun(img_path):
53
  img = img.unsqueeze(0).to(device)
54
  output = net(img).squeeze(1).cpu().numpy()[0]
55
  return output
56
-
57
- # def main():
58
- # for i in range(6, 7):
59
- # img = Image.open("./data2/%d.jpg" % i).convert('RGB')
60
- # img = transform(img)
61
- #
62
- # with torch.no_grad():
63
- # img = img.unsqueeze(0).to(device)
64
- # output = net(img).squeeze(1).cpu().numpy()[0]
65
- # print(i, output * 20)
66
-
67
-
68
- # if __name__ == '__main__':
69
- # main()
 
16
  new.load_state_dict(model_dict)
17
 
18
 
 
 
 
19
  device = torch.device("cpu")
20
  print("use cpu")
21
 
 
 
 
 
 
 
 
 
 
22
  # ans = hf_hub_download(repo_id="google/pegasus-xsum", filename="config.json")
23
  # /home/my/.cache/huggingface/hub/models--google--pegasus-xsum/snapshots/8d8ffc158a3bee9fbb03afacdfc347c823c5ec8b/config.json
24
 
25
  model_ckpt_path = hf_hub_download(repo_id="M4869/beauty_prediction_fpb5k", filename="resnet18.pth")
26
  net = Nets.ResNet(block=Nets.BasicBlock, layers=[2, 2, 2, 2], num_classes=1).to(device)
27
+ load_model(torch.load(model_ckpt_path, encoding='latin1', map_location=torch.device('cpu')), net)
28
  net.eval()
29
 
30
  transform = transforms.Compose([
 
41
  img = img.unsqueeze(0).to(device)
42
  output = net(img).squeeze(1).cpu().numpy()[0]
43
  return output