Spaces:
Runtime error
Runtime error
File size: 3,276 Bytes
83a648d c1b3993 83a648d 5bbc734 7f410f4 19a6530 83a648d 99c2aa0 5bbc734 fb540e3 5bbc734 e79c988 5bbc734 83a648d 5bbc734 8e3efa7 5bbc734 c1b3993 7f410f4 c1b3993 7f410f4 c1b3993 7f410f4 c1b3993 7f410f4 c1b3993 7f410f4 c1b3993 7f410f4 c1b3993 7f410f4 c1b3993 19a6530 c1b3993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import streamlit as st
import torch
import numpy as np
import pandas as pd
from PIL import Image
from transformers import AutoTokenizer, AutoModel
import re
import pickle
import requests
from io import BytesIO
st.title("Книжные рекомендации")
# Загрузка модели и токенизатора
model_name = "cointegrated/rubert-tiny2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, output_hidden_states=True)
# Загрузка датасета и аннотаций к книгам
books = pd.read_csv('books_6000.csv')
books.dropna(inplace=True)
books = books[books['annotation'].apply(lambda x: len(x.split()) >= 10)]
books.drop_duplicates(subset='title', keep='first', inplace=True)
books = books.reset_index(drop=True)
def data_preprocessing(text: str) -> str:
text = re.sub(r'http\S+', " ", text) # удаляем ссылки
text = re.sub(r'@\w+', ' ', text) # удаляем упоминания пользователей
text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
text = re.sub(r'<.*?>', ' ', text) # html tags
return text
for i in ['author', 'title', 'annotation']:
books[i] = books[i].apply(data_preprocessing)
annot = books['annotation']
# Получение эмбеддингов аннотаций каждой книги в датасете
max_len = 128
# Определение запроса пользователя
query = st.text_input("Введите запрос")
if st.button('Сгенерировать'):
with open("book_embeddings.pkl", "rb") as f:
book_embeddings = pickle.load(f)
query_tokens = tokenizer.encode(query, add_special_tokens=True,
truncation=True, max_length=max_len)
query_padded = np.array(query_tokens + [0] * (max_len - len(query_tokens)))
query_mask = np.where(query_padded != 0, 1, 0)
# Переведем numpy массивы в тензоры PyTorch
query_padded = torch.tensor(query_padded, dtype=torch.long)
query_mask = torch.tensor(query_mask, dtype=torch.long)
with torch.no_grad():
query_embedding = model(query_padded.unsqueeze(0), query_mask.unsqueeze(0))
query_embedding = query_embedding[0][:, 0, :]
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
cosine_similarities = torch.nn.functional.cosine_similarity(
query_embedding.squeeze(0),
torch.stack(book_embeddings)
)
cosine_similarities = cosine_similarities.numpy()
indices = np.argsort(cosine_similarities)[::-1] # Сортировка по убыванию
num_books_per_page = st.selectbox("Количество книг на странице:", [3, 5, 10], index=0)
for i in indices[:num_books_per_page]:
st.write("## " + books['title'][i])
st.write("**Автор:**", books['author'][i])
st.write("**Аннотация:**", books['annotation'][i])
image_url = books['image_url'][i]
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
st.image(image)
st.write("---")
|