File size: 5,794 Bytes
6eb1be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import PIL
from PIL import Image
import torch

from diffusion_arch import ILVRUNetModel, ConditionalUNetModel
from guided_diffusion.script_util import create_gaussian_diffusion

import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torchvision.utils import make_grid

def preprocess_image(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = torch.from_numpy(image.transpose(2,0,1)).unsqueeze(0)
    return 2.0 * image - 1.0

def preprocess_mask(mask):
    mask = mask.convert("L")
    w, h = mask.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    mask = mask.resize((w, h), resample=PIL.Image.NEAREST)
    mask = np.array(mask).astype(np.float32) / 255.0
    mask = torch.from_numpy(np.repeat(mask[None, ...], 3, axis=0)).unsqueeze(0)
    mask[mask > 0] = 1
    return mask


class DiffusionPipeline():
    def __init__(self, device):
        super().__init__()
        self.device = device
        diffusion_model = ILVRUNetModel(
            in_channels=3,
            model_channels=128,
            out_channels=6,
            num_res_blocks=1,
            attention_resolutions=[16],
            channel_mult=(1, 1, 2, 2, 4, 4),
            num_classes=None,
            use_checkpoint=False,
            use_fp16=False,
            num_heads=4,
            num_head_channels=64,
            num_heads_upsample=-1,
            use_scale_shift_norm=True,
            resblock_updown=True,
            use_new_attention_order=False
        )
        diffusion_model = diffusion_model.to(device)
        diffusion_model = diffusion_model.eval()
        ilvr_pretraining = torch.load('./ffhq_10m.pt', map_location='cpu')
        diffusion_model.load_state_dict(ilvr_pretraining)
        self.diffusion_model = diffusion_model

        diffusion_restoration_model = ConditionalUNetModel(
            in_channels=3,
            model_channels=128,
            out_channels=6,
            num_res_blocks=1,
            attention_resolutions=[16],
            dropout=0.0,
            channel_mult=(1, 1, 2, 2, 4, 4),
            num_classes=None,
            use_checkpoint=False,
            use_fp16=False,
            num_heads=4,
            num_head_channels=64,
            num_heads_upsample=-1,
            use_scale_shift_norm=True,
            resblock_updown=True,
            use_new_attention_order=False
        )
        diffusion_restoration_model = diffusion_restoration_model.to(device)
        diffusion_restoration_model = diffusion_restoration_model.eval()
        state_dict = torch.load('./net_g_250000.pth', map_location='cpu')
        diffusion_restoration_model.load_state_dict(state_dict['params'])
        self.diffusion_restoration_model = diffusion_restoration_model

    @torch.no_grad()
    def __call__(self, lq, diffusion_step, binoising_step, grid_size):
        lq = lq.convert("RGB").resize((256, 256), resample=Image.LANCZOS)

        eval_gaussian_diffusion = create_gaussian_diffusion(
            steps=1000,
            learn_sigma=True,
            noise_schedule='linear',
            use_kl=False,
            timestep_respacing=str(int(diffusion_step)),
            predict_xstart=False,
            rescale_timesteps=False,
            rescale_learned_sigmas=False,
        )

        ow, oh = lq.size

        # preprocess image
        lq_img_th = preprocess_image(lq).to(self.device)

        lq_img_th = lq_img_th.repeat([grid_size, 1, 1, 1])

        img = torch.randn_like(lq_img_th, device=self.device)
        s_img = torch.randn_like(lq_img_th, device=self.device)

        indices = list(range(eval_gaussian_diffusion.num_timesteps))[::-1]
        for i in indices:
            t = torch.tensor([i] * lq_img_th.size(0), device=self.device)

            out = eval_gaussian_diffusion.p_mean_variance(self.diffusion_restoration_model, s_img, t, model_kwargs={'lq': lq_img_th})
            nonzero_mask = (
                (t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
            )  # no noise when t == 0
            s_img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * torch.randn_like(img, device=self.device)
            s_img_pred = out["pred_xstart"]


            if i < binoising_step:
                model_output = eval_gaussian_diffusion._wrap_model(self.diffusion_restoration_model)(img, t, lq=lq_img_th)

                B, C = img.shape[:2]
                model_output, model_var_values = torch.split(model_output, C, dim=1)

                pred_xstart = eval_gaussian_diffusion._predict_xstart_from_eps(img, t, model_output).clamp(-1, 1)
                img = eval_gaussian_diffusion.q_sample(pred_xstart, t)

                out = eval_gaussian_diffusion.p_mean_variance(self.diffusion_model, img, t)

            nonzero_mask = (
                (t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
            )  # no noise when t == 0
            img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * torch.randn_like(img, device=self.device)
            img_pred = out["pred_xstart"]

            if i % 2 == 0:
                yield [Image.fromarray(np.uint8((make_grid(s_img_pred) / 2 + 0.5).clamp(0, 1).cpu().numpy().transpose(1,2,0) * 255.)), Image.fromarray(np.uint8((make_grid(img_pred) / 2 + 0.5).clamp(0, 1).cpu().numpy().transpose(1,2,0) * 255.))]

        yield [Image.fromarray(np.uint8((make_grid(s_img) / 2 + 0.5).clamp(0, 1).cpu().numpy().transpose(1,2,0) * 255.)), Image.fromarray(np.uint8((make_grid(img) / 2 + 0.5).clamp(0, 1).cpu().numpy().transpose(1,2,0) * 255.))]