|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from functools import partial |
|
from typing import Dict, List, Optional, Union |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from flax.core.frozen_dict import FrozenDict |
|
from flax.jax_utils import unreplicate |
|
from flax.training.common_utils import shard |
|
from PIL import Image |
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel |
|
|
|
from diffusers.models import FlaxAutoencoderKL, FlaxUNet2DConditionModel |
|
from diffusers.schedulers import ( |
|
FlaxDDIMScheduler, |
|
FlaxDPMSolverMultistepScheduler, |
|
FlaxLMSDiscreteScheduler, |
|
FlaxPNDMScheduler, |
|
) |
|
from diffusers.utils import PIL_INTERPOLATION, logging, replace_example_docstring |
|
from diffusers.pipelines.pipeline_flax_utils import FlaxDiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker |
|
from diffusers.schedulers.scheduling_utils_flax import get_sqrt_alpha_prod |
|
from diffusers.schedulers.scheduling_utils_flax import broadcast_to_shape_from_left |
|
|
|
from codi.controlnet_flax import FlaxControlNetModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
DEBUG = False |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import jax |
|
>>> import numpy as np |
|
>>> import jax.numpy as jnp |
|
>>> from flax.jax_utils import replicate |
|
>>> from flax.training.common_utils import shard |
|
>>> from diffusers.utils import load_image, make_image_grid |
|
>>> from PIL import Image |
|
>>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel |
|
|
|
|
|
>>> def create_key(seed=0): |
|
... return jax.random.PRNGKey(seed) |
|
|
|
|
|
>>> rng = create_key(0) |
|
|
|
>>> # get canny image |
|
>>> canny_image = load_image( |
|
... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg" |
|
... ) |
|
|
|
>>> prompts = "best quality, extremely detailed" |
|
>>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
>>> # load control net and stable diffusion v1-5 |
|
>>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( |
|
... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32 |
|
... ) |
|
>>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( |
|
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 |
|
... ) |
|
>>> params["controlnet"] = controlnet_params |
|
|
|
>>> num_samples = jax.device_count() |
|
>>> rng = jax.random.split(rng, jax.device_count()) |
|
|
|
>>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) |
|
>>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) |
|
>>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) |
|
|
|
>>> p_params = replicate(params) |
|
>>> prompt_ids = shard(prompt_ids) |
|
>>> negative_prompt_ids = shard(negative_prompt_ids) |
|
>>> processed_image = shard(processed_image) |
|
|
|
>>> output = pipe( |
|
... prompt_ids=prompt_ids, |
|
... image=processed_image, |
|
... params=p_params, |
|
... prng_seed=rng, |
|
... num_inference_steps=50, |
|
... neg_prompt_ids=negative_prompt_ids, |
|
... jit=True, |
|
... ).images |
|
|
|
>>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) |
|
>>> output_images = make_image_grid(output_images, num_samples // 4, 4) |
|
>>> output_images.save("generated_image.png") |
|
``` |
|
""" |
|
|
|
def scalings_for_boundary_conditions( |
|
timestep, sigma_data=0.5, timestep_scaling=10.0 |
|
): |
|
scaled_timestep = timestep * timestep_scaling |
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) |
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 |
|
return c_skip, c_out |
|
|
|
class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline): |
|
r""" |
|
Flax-based pipeline for text-to-image generation using Stable Diffusion with ControlNet Guidance. |
|
|
|
This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`FlaxAutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.FlaxCLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`FlaxUNet2DConditionModel`]): |
|
A `FlaxUNet2DConditionModel` to denoise the encoded image latents. |
|
controlnet ([`FlaxControlNetModel`]: |
|
Provides additional conditioning to the `unet` during the denoising process. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or |
|
[`FlaxDPMSolverMultistepScheduler`]. |
|
safety_checker ([`FlaxStableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: FlaxAutoencoderKL, |
|
text_encoder: FlaxCLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: FlaxUNet2DConditionModel, |
|
controlnet: FlaxControlNetModel, |
|
scheduler: Union[ |
|
FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler |
|
], |
|
safety_checker: FlaxStableDiffusionSafetyChecker, |
|
feature_extractor: CLIPFeatureExtractor, |
|
dtype: jnp.dtype = jnp.float32, |
|
): |
|
super().__init__() |
|
self.dtype = dtype |
|
|
|
if safety_checker is None: |
|
logger.warn( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
def prepare_text_inputs(self, prompt: Union[str, List[str]]): |
|
if not isinstance(prompt, (str, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
|
|
return text_input.input_ids |
|
|
|
def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]): |
|
if not isinstance(image, (Image.Image, list)): |
|
raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") |
|
|
|
if isinstance(image, Image.Image): |
|
image = [image] |
|
|
|
processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) |
|
|
|
return processed_images |
|
|
|
def _get_has_nsfw_concepts(self, features, params): |
|
has_nsfw_concepts = self.safety_checker(features, params) |
|
return has_nsfw_concepts |
|
|
|
def _run_safety_checker(self, images, safety_model_params, jit=False): |
|
|
|
pil_images = [Image.fromarray(image) for image in images] |
|
features = self.feature_extractor(pil_images, return_tensors="np").pixel_values |
|
|
|
if jit: |
|
features = shard(features) |
|
has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) |
|
has_nsfw_concepts = unshard(has_nsfw_concepts) |
|
safety_model_params = unreplicate(safety_model_params) |
|
else: |
|
has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) |
|
|
|
images_was_copied = False |
|
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): |
|
if has_nsfw_concept: |
|
if not images_was_copied: |
|
images_was_copied = True |
|
images = images.copy() |
|
|
|
images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) |
|
|
|
if any(has_nsfw_concepts): |
|
warnings.warn( |
|
"Potential NSFW content was detected in one or more images. A black image will be returned" |
|
" instead. Try again with a different prompt and/or seed." |
|
) |
|
|
|
return images, has_nsfw_concepts |
|
|
|
def _generate( |
|
self, |
|
prompt_ids: jnp.ndarray, |
|
image: jnp.ndarray, |
|
params: Union[Dict, FrozenDict], |
|
prng_seed: jax.Array, |
|
num_inference_steps: int, |
|
guidance_scale: float, |
|
latents: Optional[jnp.ndarray] = None, |
|
neg_prompt_ids: Optional[jnp.ndarray] = None, |
|
controlnet_conditioning_scale: float = 1.0, |
|
height: int = 512, |
|
width: int = 512, |
|
distill_timestep_scaling: int = 10, |
|
distill_learning_steps: int = 50, |
|
onestepode_sample_eps: str = "nprediction" |
|
): |
|
if image is not None: |
|
height, width = image.shape[-2:] |
|
|
|
if height % 64 != 0 or width % 64 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.") |
|
|
|
|
|
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] |
|
|
|
|
|
|
|
batch_size = prompt_ids.shape[0] |
|
|
|
max_length = prompt_ids.shape[-1] |
|
|
|
if neg_prompt_ids is None: |
|
uncond_input = self.tokenizer( |
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" |
|
).input_ids |
|
else: |
|
uncond_input = neg_prompt_ids |
|
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] |
|
context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if image is not None: |
|
image = jnp.concatenate([image] * 2) |
|
|
|
latents_shape = ( |
|
batch_size, |
|
self.unet.config.in_channels, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if latents is None: |
|
latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
|
|
def loop_body(step, args): |
|
latents, scheduler_state = args |
|
latents_input = jnp.concatenate([latents] * 2) |
|
|
|
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] |
|
timestep = jnp.broadcast_to(t, latents.shape[0]) |
|
next_t = jnp.where(step < num_inference_steps -1, jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step + 1], 0) |
|
next_timestep = jnp.broadcast_to(next_t, latents.shape[0]) |
|
|
|
c_skip, c_out = scalings_for_boundary_conditions( |
|
timestep, timestep_scaling=distill_timestep_scaling, |
|
) |
|
alpha_t, sigma_t = get_sqrt_alpha_prod( |
|
scheduler_state.common, |
|
latents, |
|
latents, |
|
timestep, |
|
) |
|
alpha_s, sigma_s = get_sqrt_alpha_prod( |
|
scheduler_state.common, |
|
latents, |
|
latents, |
|
next_timestep, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c_skip = broadcast_to_shape_from_left(c_skip, latents.shape) |
|
c_out = broadcast_to_shape_from_left(c_out, latents.shape) |
|
|
|
latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet.apply( |
|
{"params": params["controlnet"]}, |
|
jnp.array(latents_input), |
|
jnp.array(jnp.concatenate([timestep] * 2, axis=0), dtype=jnp.int32), |
|
encoder_hidden_states=context, |
|
controlnet_cond=image, |
|
conditioning_scale=controlnet_conditioning_scale, |
|
return_dict=False, |
|
) |
|
|
|
|
|
model_pred = self.unet.apply( |
|
{"params": params["unet"]}, |
|
jnp.array(latents_input), |
|
jnp.array(timestep, dtype=jnp.int32), |
|
encoder_hidden_states=context, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
|
|
|
|
mode_pred_uncond, model_prediction_text = jnp.split(model_pred, 2, axis=0) |
|
model_pred = mode_pred_uncond + guidance_scale * (model_prediction_text - mode_pred_uncond) |
|
|
|
if onestepode_sample_eps == 'nprediction': |
|
target_model_pred_x = (latents - sigma_t * model_pred ) / alpha_t |
|
target_model_pred_epsilon = model_pred |
|
elif args.onestepode_sample_eps == 'vprediction': |
|
target_model_pred_epsilon = ( |
|
alpha_t * model_pred + sigma_t * latents_input |
|
) |
|
target_model_pred_x = ( |
|
alpha_t * latents - sigma_t * model_pred |
|
) |
|
elif args.onestepode_sample_eps == 'xprediction': |
|
target_model_pred_x = model_pred |
|
target_model_pred_epsilon = (latents - alpha_t * model_pred) / sigma_t |
|
else: |
|
raise NotImplementedError |
|
|
|
target_model_pred_x = ( |
|
c_skip * latents + c_out * target_model_pred_x |
|
) |
|
|
|
latents = alpha_s * target_model_pred_x + sigma_s * target_model_pred_epsilon |
|
return latents, scheduler_state |
|
|
|
scheduler_state = params["scheduler"] |
|
skipped_schedule = self.scheduler.num_train_timesteps // distill_learning_steps |
|
timesteps = (jnp.arange(0, distill_learning_steps) * skipped_schedule).round()[::-1] |
|
step_ratio = (distill_learning_steps + num_inference_steps - 1) // num_inference_steps |
|
timesteps = timesteps[::step_ratio] |
|
scheduler_state = scheduler_state.replace( |
|
num_inference_steps=num_inference_steps, timesteps=timesteps |
|
) |
|
|
|
|
|
latents = latents * params["scheduler"].init_noise_sigma |
|
|
|
if DEBUG: |
|
|
|
for i in range(num_inference_steps): |
|
latents, scheduler_state = loop_body(i, (latents, scheduler_state)) |
|
else: |
|
latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) |
|
|
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample |
|
|
|
image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) |
|
return image |
|
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt_ids: jnp.ndarray, |
|
image: jnp.ndarray, |
|
params: Union[Dict, FrozenDict], |
|
prng_seed: jax.Array, |
|
num_inference_steps: int = 50, |
|
guidance_scale: Union[float, jnp.ndarray] = 7.5, |
|
latents: jnp.ndarray = None, |
|
neg_prompt_ids: jnp.ndarray = None, |
|
controlnet_conditioning_scale: Union[float, jnp.ndarray] = 1.0, |
|
return_dict: bool = True, |
|
jit: bool = False, |
|
height: int = 512, |
|
width: int = 512, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt_ids (`jnp.ndarray`): |
|
The prompt or prompts to guide the image generation. |
|
image (`jnp.ndarray`): |
|
Array representing the ControlNet input condition to provide guidance to the `unet` for generation. |
|
params (`Dict` or `FrozenDict`): |
|
Dictionary containing the model parameters/weights. |
|
prng_seed (`jax.Array`): |
|
Array containing random number generator key. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
latents (`jnp.ndarray`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
array is generated by sampling using the supplied random `generator`. |
|
controlnet_conditioning_scale (`float` or `jnp.ndarray`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of |
|
a plain tuple. |
|
jit (`bool`, defaults to `False`): |
|
Whether to run `pmap` versions of the generation and safety scoring functions. |
|
|
|
<Tip warning={true}> |
|
|
|
This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a |
|
future release. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated images |
|
and the second element is a list of `bool`s indicating whether the corresponding generated image |
|
contains "not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
if image is not None: |
|
height, width = image.shape[-2:] |
|
|
|
if isinstance(guidance_scale, float): |
|
|
|
|
|
guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) |
|
if len(prompt_ids.shape) > 2: |
|
|
|
guidance_scale = guidance_scale[:, None] |
|
|
|
if isinstance(controlnet_conditioning_scale, float): |
|
|
|
|
|
controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0]) |
|
if len(prompt_ids.shape) > 2: |
|
|
|
controlnet_conditioning_scale = controlnet_conditioning_scale[:, None] |
|
|
|
if jit: |
|
images = _p_generate( |
|
self, |
|
prompt_ids, |
|
image, |
|
params, |
|
prng_seed, |
|
num_inference_steps, |
|
guidance_scale, |
|
latents, |
|
neg_prompt_ids, |
|
controlnet_conditioning_scale, |
|
height, |
|
width, |
|
) |
|
else: |
|
images = self._generate( |
|
prompt_ids, |
|
image, |
|
params, |
|
prng_seed, |
|
num_inference_steps, |
|
guidance_scale, |
|
latents, |
|
neg_prompt_ids, |
|
controlnet_conditioning_scale, |
|
height, |
|
width, |
|
) |
|
|
|
if self.safety_checker is not None: |
|
safety_params = params["safety_checker"] |
|
images_uint8_casted = (images * 255).round().astype("uint8") |
|
num_devices, batch_size = images.shape[:2] |
|
|
|
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) |
|
images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) |
|
images = np.array(images) |
|
|
|
|
|
if any(has_nsfw_concept): |
|
for i, is_nsfw in enumerate(has_nsfw_concept): |
|
if is_nsfw: |
|
images[i] = np.asarray(images_uint8_casted[i]) |
|
|
|
images = images.reshape(num_devices, batch_size, height, width, 3) |
|
else: |
|
images = np.asarray(images) |
|
has_nsfw_concept = False |
|
|
|
if not return_dict: |
|
return (images, has_nsfw_concept) |
|
|
|
return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) |
|
|
|
|
|
|
|
|
|
@partial( |
|
jax.pmap, |
|
in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0, 0, 0), |
|
static_broadcasted_argnums=(0, 5, 10, 11), |
|
) |
|
def _p_generate( |
|
pipe, |
|
prompt_ids, |
|
image, |
|
params, |
|
prng_seed, |
|
num_inference_steps, |
|
guidance_scale, |
|
latents, |
|
neg_prompt_ids, |
|
controlnet_conditioning_scale, |
|
height, |
|
width, |
|
): |
|
return pipe._generate( |
|
prompt_ids, |
|
image, |
|
params, |
|
prng_seed, |
|
num_inference_steps, |
|
guidance_scale, |
|
latents, |
|
neg_prompt_ids, |
|
controlnet_conditioning_scale, |
|
height, |
|
width, |
|
) |
|
|
|
|
|
@partial(jax.pmap, static_broadcasted_argnums=(0,)) |
|
def _p_get_has_nsfw_concepts(pipe, features, params): |
|
return pipe._get_has_nsfw_concepts(features, params) |
|
|
|
|
|
def unshard(x: jnp.ndarray): |
|
|
|
num_devices, batch_size = x.shape[:2] |
|
rest = x.shape[2:] |
|
return x.reshape(num_devices * batch_size, *rest) |
|
|
|
|
|
def preprocess(image, dtype): |
|
image = image.convert("RGB") |
|
w, h = image.size |
|
w, h = (x - x % 64 for x in (w, h)) |
|
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) |
|
image = jnp.array(image).astype(dtype) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
return image |
|
|