CoDi / app.py
MKFMIKU's picture
Update app.py
7b74343 verified
raw
history blame
4.61 kB
import gradio as gr
import jax
import numpy as np
import jax.numpy as jnp
from flax.training import checkpoints
from diffusers import FlaxControlNetModel, FlaxUNet2DConditionModel, FlaxAutoencoderKL, FlaxDDIMScheduler
from codi.controlnet_flax import FlaxControlNetModel
from codi.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
from transformers import CLIPTokenizer, FlaxCLIPTextModel
from flax.training.common_utils import shard
from flax.jax_utils import replicate
MODEL_NAME = "CompVis/stable-diffusion-v1-4"
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
MODEL_NAME,
subfolder="unet",
revision="flax",
dtype=jnp.float32,
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
MODEL_NAME,
subfolder="vae",
revision="flax",
dtype=jnp.float32,
)
text_encoder = FlaxCLIPTextModel.from_pretrained(
MODEL_NAME,
subfolder="text_encoder",
revision="flax",
dtype=jnp.float32,
)
tokenizer = CLIPTokenizer.from_pretrained(
MODEL_NAME,
subfolder="tokenizer",
revision="flax",
dtype=jnp.float32,
)
controlnet = FlaxControlNetModel(
in_channels=unet.config.in_channels,
down_block_types=unet.config.down_block_types,
only_cross_attention=unet.config.only_cross_attention,
block_out_channels=unet.config.block_out_channels,
layers_per_block=unet.config.layers_per_block,
attention_head_dim=unet.config.attention_head_dim,
cross_attention_dim=unet.config.cross_attention_dim,
use_linear_projection=unet.config.use_linear_projection,
flip_sin_to_cos=unet.config.flip_sin_to_cos,
freq_shift=unet.config.freq_shift,
)
scheduler = FlaxDDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
trained_betas=None,
set_alpha_to_one=True,
steps_offset=0,
)
scheduler_state = scheduler.create_state()
pipeline = FlaxStableDiffusionControlNetPipeline(
vae,
text_encoder,
tokenizer,
unet,
controlnet,
scheduler,
None,
None,
dtype=jnp.float32,
)
controlnet_params = checkpoints.restore_checkpoint("checkpoint_72001", target=None)
pipeline_params = {
"vae": vae_params,
"unet": unet_params,
"text_encoder": text_encoder.params,
"scheduler": scheduler_state,
"controlnet": controlnet_params,
}
pipeline_params = replicate(pipeline_params)
def infer(seed, prompt, negative_prompt, steps, cfgr):
rng = jax.random.PRNGKey(int(seed))
num_samples = jax.device_count()
rng = jax.random.split(rng, num_samples)
prompt_ids = pipeline.prepare_text_inputs([prompt] * num_samples)
negative_prompt_ids = pipeline.prepare_text_inputs([negative_prompt] * num_samples)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
output = pipeline(
prompt_ids=prompt_ids,
image=None,
params=pipeline_params,
prng_seed=rng,
num_inference_steps=int(steps),
guidance_scale=float(cfgr),
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("## Parameter-efficient text-to-image distillation")
gr.Markdown("[\[Paper\]](https://arxiv.org/abs/2310.01407) [\[Project Page\]](https://fast-codi.github.io)")
with gr.Tab("CoDi on Text-to-Image"):
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality")
seed = gr.Number(label="Seed", value=0)
output = gr.Gallery(label="Output Images")
with gr.Row():
num_inference_steps = gr.Slider(2, 50, value=4, step=1, label="Steps")
guidance_scale = gr.Slider(2.0, 14.0, value=7.5, step=0.5, label='Guidance Scale')
submit_btn = gr.Button(value = "Submit")
inputs = [
seed,
prompt_input,
negative_prompt,
num_inference_steps,
guidance_scale
]
submit_btn.click(fn=infer, inputs=inputs, outputs=[output])
with gr.Row():
gr.Examples(
examples=["oranges", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
inputs=prompt_input,
fn=infer
)
demo.launch()