|
import gradio as gr |
|
import jax |
|
import numpy as np |
|
import jax.numpy as jnp |
|
from flax.training import checkpoints |
|
from diffusers import FlaxControlNetModel, FlaxUNet2DConditionModel, FlaxAutoencoderKL, FlaxDDIMScheduler |
|
from codi.controlnet_flax import FlaxControlNetModel |
|
from codi.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline |
|
from transformers import CLIPTokenizer, FlaxCLIPTextModel |
|
from flax.training.common_utils import shard |
|
from flax.jax_utils import replicate |
|
|
|
|
|
MODEL_NAME = "CompVis/stable-diffusion-v1-4" |
|
|
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( |
|
MODEL_NAME, |
|
subfolder="unet", |
|
revision="flax", |
|
dtype=jnp.float32, |
|
) |
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained( |
|
MODEL_NAME, |
|
subfolder="vae", |
|
revision="flax", |
|
dtype=jnp.float32, |
|
) |
|
text_encoder = FlaxCLIPTextModel.from_pretrained( |
|
MODEL_NAME, |
|
subfolder="text_encoder", |
|
revision="flax", |
|
dtype=jnp.float32, |
|
) |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
MODEL_NAME, |
|
subfolder="tokenizer", |
|
revision="flax", |
|
dtype=jnp.float32, |
|
) |
|
|
|
controlnet = FlaxControlNetModel( |
|
in_channels=unet.config.in_channels, |
|
down_block_types=unet.config.down_block_types, |
|
only_cross_attention=unet.config.only_cross_attention, |
|
block_out_channels=unet.config.block_out_channels, |
|
layers_per_block=unet.config.layers_per_block, |
|
attention_head_dim=unet.config.attention_head_dim, |
|
cross_attention_dim=unet.config.cross_attention_dim, |
|
use_linear_projection=unet.config.use_linear_projection, |
|
flip_sin_to_cos=unet.config.flip_sin_to_cos, |
|
freq_shift=unet.config.freq_shift, |
|
) |
|
scheduler = FlaxDDIMScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
trained_betas=None, |
|
set_alpha_to_one=True, |
|
steps_offset=0, |
|
) |
|
scheduler_state = scheduler.create_state() |
|
|
|
pipeline = FlaxStableDiffusionControlNetPipeline( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
controlnet, |
|
scheduler, |
|
None, |
|
None, |
|
dtype=jnp.float32, |
|
) |
|
controlnet_params = checkpoints.restore_checkpoint("checkpoint_72001", target=None) |
|
|
|
pipeline_params = { |
|
"vae": vae_params, |
|
"unet": unet_params, |
|
"text_encoder": text_encoder.params, |
|
"scheduler": scheduler_state, |
|
"controlnet": controlnet_params, |
|
} |
|
pipeline_params = replicate(pipeline_params) |
|
|
|
def infer(seed, prompt, negative_prompt, steps, cfgr): |
|
rng = jax.random.PRNGKey(int(seed)) |
|
|
|
num_samples = jax.device_count() |
|
rng = jax.random.split(rng, num_samples) |
|
|
|
prompt_ids = pipeline.prepare_text_inputs([prompt] * num_samples) |
|
negative_prompt_ids = pipeline.prepare_text_inputs([negative_prompt] * num_samples) |
|
|
|
prompt_ids = shard(prompt_ids) |
|
negative_prompt_ids = shard(negative_prompt_ids) |
|
|
|
output = pipeline( |
|
prompt_ids=prompt_ids, |
|
image=None, |
|
params=pipeline_params, |
|
prng_seed=rng, |
|
num_inference_steps=int(steps), |
|
guidance_scale=float(cfgr), |
|
neg_prompt_ids=negative_prompt_ids, |
|
jit=True, |
|
).images |
|
|
|
output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) |
|
return output_images |
|
|
|
with gr.Blocks(theme='gradio/soft') as demo: |
|
gr.Markdown("## Parameter-efficient text-to-image distillation") |
|
gr.Markdown("[\[Paper\]](https://arxiv.org/abs/2310.01407) [\[Project Page\]](https://fast-codi.github.io)") |
|
|
|
with gr.Tab("CoDi on Text-to-Image"): |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt_input = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative Prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality") |
|
seed = gr.Number(label="Seed", value=0) |
|
output = gr.Gallery(label="Output Images") |
|
|
|
with gr.Row(): |
|
num_inference_steps = gr.Slider(2, 50, value=4, step=1, label="Steps") |
|
guidance_scale = gr.Slider(2.0, 14.0, value=7.5, step=0.5, label='Guidance Scale') |
|
submit_btn = gr.Button(value = "Submit") |
|
inputs = [ |
|
seed, |
|
prompt_input, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale |
|
] |
|
submit_btn.click(fn=infer, inputs=inputs, outputs=[output]) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
examples=["oranges", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"], |
|
inputs=prompt_input, |
|
fn=infer |
|
) |
|
|
|
demo.launch() |
|
|