Spaces:
Sleeping
Sleeping
Update inference_app.py
Browse files- inference_app.py +23 -80
inference_app.py
CHANGED
@@ -6,11 +6,10 @@ import torch
|
|
6 |
from torch_geometric.data import HeteroData
|
7 |
import numpy as np
|
8 |
from loguru import logger
|
9 |
-
from Bio import PDB
|
10 |
-
from Bio.PDB.PDBIO import PDBIO
|
11 |
from pinder.core.loader.geodata import structure2tensor
|
12 |
from pinder.core.loader.structure import Structure
|
13 |
from src.models.pinder_module import PinderLitModule
|
|
|
14 |
|
15 |
try:
|
16 |
from torch_cluster import knn_graph
|
@@ -37,13 +36,13 @@ def get_props_pdb(pdb_file):
|
|
37 |
residue_types=calpha.res_name,
|
38 |
residue_ids=calpha.res_id,
|
39 |
)
|
40 |
-
return props
|
41 |
|
42 |
|
43 |
def create_graph(pdb_1, pdb_2, k=5, device: torch.device = torch.device("cpu")):
|
44 |
|
45 |
-
props_ligand = get_props_pdb(pdb_1)
|
46 |
-
props_receptor = get_props_pdb(pdb_2)
|
47 |
|
48 |
data = HeteroData()
|
49 |
|
@@ -56,74 +55,7 @@ def create_graph(pdb_1, pdb_2, k=5, device: torch.device = torch.device("cpu")):
|
|
56 |
data["receptor", "receptor"].edge_index = knn_graph(data["receptor"].pos, k=k)
|
57 |
|
58 |
data = data.to(device)
|
59 |
-
return data
|
60 |
-
|
61 |
-
|
62 |
-
def update_pdb_coordinates_from_tensor(
|
63 |
-
input_filename, output_filename, coordinates_tensor
|
64 |
-
):
|
65 |
-
r"""
|
66 |
-
Updates atom coordinates in a PDB file with new transformed coordinates provided in a tensor.
|
67 |
-
|
68 |
-
Parameters:
|
69 |
-
- input_filename (str): Path to the original PDB file.
|
70 |
-
- output_filename (str): Path to the new PDB file to save updated coordinates.
|
71 |
-
- coordinates_tensor (torch.Tensor): Tensor of shape (1, N, 3) with transformed coordinates.
|
72 |
-
"""
|
73 |
-
# Convert the tensor to a list of tuples
|
74 |
-
new_coordinates = coordinates_tensor.squeeze(0).tolist()
|
75 |
-
|
76 |
-
# Create a parser and parse the structure
|
77 |
-
parser = PDB.PDBParser(QUIET=True)
|
78 |
-
structure = parser.get_structure("structure", input_filename)
|
79 |
-
|
80 |
-
# Flattened iterator for atoms to update coordinates
|
81 |
-
atom_iterator = (
|
82 |
-
atom
|
83 |
-
for model in structure
|
84 |
-
for chain in model
|
85 |
-
for residue in chain
|
86 |
-
for atom in residue
|
87 |
-
)
|
88 |
-
|
89 |
-
# Update each atom's coordinates
|
90 |
-
for atom, (new_x, new_y, new_z) in zip(atom_iterator, new_coordinates):
|
91 |
-
original_anisou = atom.get_anisou()
|
92 |
-
original_uij = atom.get_siguij()
|
93 |
-
original_tm = atom.get_sigatm()
|
94 |
-
original_occupancy = atom.get_occupancy()
|
95 |
-
original_bfactor = atom.get_bfactor()
|
96 |
-
original_altloc = atom.get_altloc()
|
97 |
-
original_serial_number = atom.get_serial_number()
|
98 |
-
original_element = atom.get_charge()
|
99 |
-
original_parent = atom.get_parent()
|
100 |
-
original_radius = atom.get_radius()
|
101 |
-
|
102 |
-
# Update only the atom coordinates, keep other fields intact
|
103 |
-
atom.coord = np.array([new_x, new_y, new_z])
|
104 |
-
|
105 |
-
# Reapply the preserved properties
|
106 |
-
atom.set_anisou(original_anisou)
|
107 |
-
atom.set_siguij(original_uij)
|
108 |
-
atom.set_sigatm(original_tm)
|
109 |
-
atom.set_occupancy(original_occupancy)
|
110 |
-
atom.set_bfactor(original_bfactor)
|
111 |
-
atom.set_altloc(original_altloc)
|
112 |
-
# atom.set_fullname(original_fullname)
|
113 |
-
atom.set_serial_number(original_serial_number)
|
114 |
-
atom.set_charge(original_element)
|
115 |
-
atom.set_radius(original_radius)
|
116 |
-
atom.set_parent(original_parent)
|
117 |
-
# atom.set_name(original_name)
|
118 |
-
# atom.set_leve
|
119 |
-
|
120 |
-
# Save the updated structure to a new PDB file
|
121 |
-
io = PDBIO()
|
122 |
-
io.set_structure(structure)
|
123 |
-
io.save(output_filename)
|
124 |
-
|
125 |
-
# Return the path to the updated PDB file
|
126 |
-
return output_filename
|
127 |
|
128 |
|
129 |
def merge_pdb_files(file1, file2, output_file):
|
@@ -156,7 +88,9 @@ def predict(
|
|
156 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
157 |
logger.info(f"Using device: {device}")
|
158 |
|
159 |
-
data
|
|
|
|
|
160 |
logger.info("Created graph data")
|
161 |
|
162 |
model = PinderLitModule.load_from_checkpoint("./checkpoints/epoch_010.ckpt")
|
@@ -167,13 +101,22 @@ def predict(
|
|
167 |
with torch.no_grad():
|
168 |
receptor_coords, ligand_coords = model(data)
|
169 |
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
172 |
)
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
)
|
176 |
-
out_pdb = merge_pdb_files(file1, file2, "output.pdb")
|
177 |
|
178 |
# return an output pdb file with the protein and two chains A and B.
|
179 |
# also return a JSON with any metrics you want to report
|
@@ -267,4 +210,4 @@ with gr.Blocks() as app:
|
|
267 |
outputs=[out, metrics, run_time],
|
268 |
)
|
269 |
|
270 |
-
app.launch()
|
|
|
6 |
from torch_geometric.data import HeteroData
|
7 |
import numpy as np
|
8 |
from loguru import logger
|
|
|
|
|
9 |
from pinder.core.loader.geodata import structure2tensor
|
10 |
from pinder.core.loader.structure import Structure
|
11 |
from src.models.pinder_module import PinderLitModule
|
12 |
+
from pathlib import Path
|
13 |
|
14 |
try:
|
15 |
from torch_cluster import knn_graph
|
|
|
36 |
residue_types=calpha.res_name,
|
37 |
residue_ids=calpha.res_id,
|
38 |
)
|
39 |
+
return structure, props
|
40 |
|
41 |
|
42 |
def create_graph(pdb_1, pdb_2, k=5, device: torch.device = torch.device("cpu")):
|
43 |
|
44 |
+
ligand_structure, props_ligand = get_props_pdb(pdb_1)
|
45 |
+
receptor_structure, props_receptor = get_props_pdb(pdb_2)
|
46 |
|
47 |
data = HeteroData()
|
48 |
|
|
|
55 |
data["receptor", "receptor"].edge_index = knn_graph(data["receptor"].pos, k=k)
|
56 |
|
57 |
data = data.to(device)
|
58 |
+
return data, receptor_structure, ligand_structure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def merge_pdb_files(file1, file2, output_file):
|
|
|
88 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
89 |
logger.info(f"Using device: {device}")
|
90 |
|
91 |
+
data, receptor_structure, ligand_structure = create_graph(
|
92 |
+
input_protein_1, input_protein_2, k=10, device=device
|
93 |
+
)
|
94 |
logger.info("Created graph data")
|
95 |
|
96 |
model = PinderLitModule.load_from_checkpoint("./checkpoints/epoch_010.ckpt")
|
|
|
101 |
with torch.no_grad():
|
102 |
receptor_coords, ligand_coords = model(data)
|
103 |
|
104 |
+
receptor_structure.coord = receptor_coords.squeeze(0).cpu().numpy()
|
105 |
+
ligand_structure.coord = ligand_coords.squeeze(0).cpu().numpy()
|
106 |
+
|
107 |
+
receptor_pinder = Structure(
|
108 |
+
filepath=Path("./holo_receptor.pdb"), atom_array=receptor_structure
|
109 |
)
|
110 |
+
ligand_pinder = Structure(
|
111 |
+
filepath=Path("./holo_ligand.pdb"), atom_array=ligand_structure
|
112 |
+
)
|
113 |
+
|
114 |
+
receptor_pinder.to_pdb()
|
115 |
+
ligand_pinder.to_pdb()
|
116 |
+
|
117 |
+
out_pdb = merge_pdb_files(
|
118 |
+
"./holo_receptor.pdb", "./holo_ligand.pdb", "./output.pdb"
|
119 |
)
|
|
|
120 |
|
121 |
# return an output pdb file with the protein and two chains A and B.
|
122 |
# also return a JSON with any metrics you want to report
|
|
|
210 |
outputs=[out, metrics, run_time],
|
211 |
)
|
212 |
|
213 |
+
app.launch()
|