Spaces:
Sleeping
Sleeping
simonduerr
commited on
Upload 3 files
Browse files- Dockerfile +21 -0
- LICENSE +21 -0
- inference_app.py +189 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM gnina/gnina:v1.1
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
WORKDIR /usr/src/app
|
5 |
+
|
6 |
+
COPY --link --chown=1000 ./ /usr/src/app
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
|
10 |
+
RUN pip3 install rdkit==2023.9.6 pandas==2.1.4 posebusters==0.2.7
|
11 |
+
RUN pip3 install gradio gradio_molecule3d
|
12 |
+
|
13 |
+
RUN git clone https://github.com/rlabduke/reduce.git && cd reduce && make && make install
|
14 |
+
|
15 |
+
USER user
|
16 |
+
|
17 |
+
EXPOSE 7860
|
18 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
19 |
+
|
20 |
+
CMD ["python3", "inference_app.py"]
|
21 |
+
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 inductive-bio
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
inference_app.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Runs the full strong baseline, including smina/vina docking,
|
2 |
+
# gnina rescoring, and an input conformational ensemble.
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from rdkit import Chem
|
10 |
+
from rdkit.Chem import AllChem, PandasTools, rdMolTransforms
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from moleculekit.molecule import Molecule
|
14 |
+
|
15 |
+
import time
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
from gradio_molecule3d import Molecule3D
|
20 |
+
|
21 |
+
def protonate_receptor_and_ligand(protein,ligand):
|
22 |
+
protein_out = protein.replace(".pdb","_H.pdb")
|
23 |
+
with open(protein_out, "w") as f:
|
24 |
+
subprocess.run(
|
25 |
+
["reduce", "-BUILD", protein],
|
26 |
+
stdout=f,
|
27 |
+
stderr=subprocess.DEVNULL,
|
28 |
+
)
|
29 |
+
ligand_out = ligand.replace(".pdb","_H.pdb")
|
30 |
+
subprocess.run(["obabel", ligand, "-O", ligand_out, "-p", "7.4"])
|
31 |
+
|
32 |
+
|
33 |
+
def generate_conformers(ligand, num_confs=8):
|
34 |
+
mol = Chem.MolFromMolFile(
|
35 |
+
ligand.replace(".pdb","_H.pdb")
|
36 |
+
)
|
37 |
+
mol.RemoveAllConformers()
|
38 |
+
mol = Chem.AddHs(mol)
|
39 |
+
AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=1)
|
40 |
+
AllChem.UFFOptimizeMoleculeConfs(mol)
|
41 |
+
with Chem.SDWriter(
|
42 |
+
ligand.replace(".pdb","_multiple_confs.pdb")
|
43 |
+
) as writer:
|
44 |
+
for cid in range(mol.GetNumConformers()):
|
45 |
+
writer.write(mol, confId=cid)
|
46 |
+
|
47 |
+
def get_bb(points):
|
48 |
+
"""Return bounding box from a set of points (N,3)
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
points : numpy.ndarray
|
53 |
+
Set of points (N,3)
|
54 |
+
|
55 |
+
Returns
|
56 |
+
-------
|
57 |
+
boundingBox : list
|
58 |
+
List of the form [xmin, xmax, ymin, ymax, zmin, zmax]
|
59 |
+
|
60 |
+
"""
|
61 |
+
minx = np.min(points[:, 0])
|
62 |
+
maxx = np.max(points[:, 0])
|
63 |
+
|
64 |
+
miny = np.min(points[:, 1])
|
65 |
+
maxy = np.max(points[:, 1])
|
66 |
+
|
67 |
+
minz = np.min(points[:, 2])
|
68 |
+
maxz = np.max(points[:, 2])
|
69 |
+
bb = [[minx, miny, minz], [maxx, maxy, maxz]]
|
70 |
+
return bb
|
71 |
+
|
72 |
+
def run_docking(protein, ligand):
|
73 |
+
|
74 |
+
mol = Molecule(protein)
|
75 |
+
mol.center()
|
76 |
+
bb = get_bb(mol.coords)
|
77 |
+
size_x = bb[1][0] - bb[0][0]
|
78 |
+
size_y = bb[1][1] - bb[0][1]
|
79 |
+
size_z = bb[1][2] - bb[0][2]
|
80 |
+
|
81 |
+
subprocess.run(
|
82 |
+
[
|
83 |
+
"gnina",
|
84 |
+
"-r",
|
85 |
+
protein.replace(".pdb","_H.pdb"),
|
86 |
+
"-l",
|
87 |
+
ligand.replace(".sdf","_ligand_multiple_confs.sdf"),
|
88 |
+
"-o",
|
89 |
+
ligand.replace(".sdf","_multiple_confs_poses.sdf"),
|
90 |
+
"--center_x", # bounding box matching PoseBusters methodology
|
91 |
+
str(0),
|
92 |
+
"--center_y",
|
93 |
+
str(0),
|
94 |
+
"--center_z",
|
95 |
+
str(0),
|
96 |
+
"--size_x",
|
97 |
+
str(size_x),
|
98 |
+
"--size_y",
|
99 |
+
str(size_y),
|
100 |
+
"--size_z",
|
101 |
+
str(size_z),
|
102 |
+
"--scoring",
|
103 |
+
"vina",
|
104 |
+
"--exhaustiveness",
|
105 |
+
"4",
|
106 |
+
"--num_modes",
|
107 |
+
"1",
|
108 |
+
"--seed",
|
109 |
+
"1",
|
110 |
+
]
|
111 |
+
)
|
112 |
+
# sort the poses from the multiple conformation runs, so overall best is first
|
113 |
+
poses = PandasTools.LoadSDF(
|
114 |
+
ligand.replace(".sdf","_multiple_confs_poses.sdf")
|
115 |
+
)
|
116 |
+
poses["CNNscore"] = poses["CNNscore"].astype(float)
|
117 |
+
gnina_order = poses.sort_values("CNNscore", ascending=False).reset_index(drop=True)
|
118 |
+
PandasTools.WriteSDF(
|
119 |
+
gnina_order,
|
120 |
+
ligand.replace(".sdf","_multiple_confs_poses.sdf")
|
121 |
+
properties=list(poses.columns),
|
122 |
+
)
|
123 |
+
return poses["CNNscore"]
|
124 |
+
|
125 |
+
|
126 |
+
def predict (input_sequence, input_ligand,input_msa, input_protein):
|
127 |
+
start_time = time.time()
|
128 |
+
|
129 |
+
protonate_receptor_and_ligand(input_protein, input_ligand)
|
130 |
+
generate_conformers(input_protein, input_ligand)
|
131 |
+
cnn_score = run_docking(input_protein, input_ligand)
|
132 |
+
metrics = {"cnn_score": cnn_score}
|
133 |
+
end_time = time.time()
|
134 |
+
run_time = end_time - start_time
|
135 |
+
return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time
|
136 |
+
|
137 |
+
with gr.Blocks() as app:
|
138 |
+
|
139 |
+
gr.Markdown("# Template for inference")
|
140 |
+
|
141 |
+
gr.Markdown("Title, description, and other information about the model")
|
142 |
+
with gr.Row():
|
143 |
+
input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
|
144 |
+
input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
|
145 |
+
with gr.Row():
|
146 |
+
input_msa = gr.File(label="Input Protein MSA (A3M)")
|
147 |
+
input_protein = gr.File(label="Input protein monomer")
|
148 |
+
|
149 |
+
|
150 |
+
# define any options here
|
151 |
+
|
152 |
+
# for automated inference the default options are used
|
153 |
+
# slider_option = gr.Slider(0,10, label="Slider Option")
|
154 |
+
# checkbox_option = gr.Checkbox(label="Checkbox Option")
|
155 |
+
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
|
156 |
+
|
157 |
+
btn = gr.Button("Run Inference")
|
158 |
+
|
159 |
+
gr.Examples(
|
160 |
+
[
|
161 |
+
[
|
162 |
+
"SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL:SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL",
|
163 |
+
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
|
164 |
+
"test_out.pdb"
|
165 |
+
],
|
166 |
+
],
|
167 |
+
[input_sequence, input_ligand, input_protein],
|
168 |
+
)
|
169 |
+
reps = [
|
170 |
+
{
|
171 |
+
"model": 0,
|
172 |
+
"style": "cartoon",
|
173 |
+
"color": "whiteCarbon",
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"model": 1,
|
177 |
+
"style": "stick",
|
178 |
+
"color": "greenCarbon",
|
179 |
+
}
|
180 |
+
|
181 |
+
]
|
182 |
+
|
183 |
+
out = Molecule3D(reps=reps)
|
184 |
+
metrics = gr.JSON(label="Metrics")
|
185 |
+
run_time = gr.Textbox(label="Runtime")
|
186 |
+
|
187 |
+
btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out,metrics, run_time])
|
188 |
+
|
189 |
+
app.launch()
|