Spaces:
Running
Running
File size: 26,592 Bytes
3e8020b 62d48db 3e8020b 8145d10 03f13cc 8145d10 03f13cc 3e8020b 9c5be01 8145d10 3e8020b 9c5be01 8145d10 3e8020b 9c5be01 3e8020b 8145d10 3e8020b e8e50f1 3e8020b e8e50f1 3e8020b 44ebc11 3e8020b 5b772ef 3e8020b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import pandas as pd
import numpy as np
from collections import defaultdict
from constants import *
import os
from huggingface_hub import Repository
import json
global data_component_aad, data_component_iasd, data_component_ivqd, filter_component
TOKEN = os.environ.get("TOKEN")
repo = Repository(local_dir="./download_from_dataset", clone_from="MM-UPD/results_for_leaderboard", repo_type="dataset", use_auth_token=TOKEN)
current_directory = os.getcwd()
def validate_model_size(s):
pattern = r'^\d+B$|^-$'
if re.match(pattern, s):
return s
else:
return '-'
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def create_df(input_file):
json_string = input_file.decode('utf-8')
data = json.loads(json_string)
df = pd.DataFrame(data)
return df
# Accuracy Report
def report_acc(df, groupd='category', metric_type="dual"):
assert 'split' in df
assert groupd in [None, 'category', 'l2-category']
res = defaultdict(list)
res['split'] = ['test']
if groupd is None:
if metric_type == "dual":
res['overall'] = [
np.mean(df['hit']),
]
elif metric_type == "standard":
res['overall'] = [
np.mean(df['hit_standard']),
]
elif metric_type == "upd":
res['overall'] = [
np.mean(df['hit_upd']),
]
return pd.DataFrame(res)
elif groupd in df:
abilities = list(set(df[groupd]))
abilities.sort()
for ab in abilities:
sub_df = df[df[groupd] == ab]
if metric_type == "dual":
res[ab] = [
np.mean(sub_df['hit']),
]
elif metric_type == "standard":
res[ab] = [
np.mean(sub_df['hit_standard']),
]
elif metric_type == "upd":
res[ab] = [
np.mean(sub_df['hit_upd']),
]
return pd.DataFrame(res)
def eval_result_dual(data_main, metric_type="dual"):
overall = report_acc(data_main, None, metric_type)
leaf = report_acc(data_main, 'category', metric_type)
overall = round(overall['overall'].values[0] * 100, 1)
leaf = leaf.iloc[:, 1:].values.flatten().tolist()
leaf = [round(x * 100, 1) for x in leaf]
return overall, leaf
def calculate_score(input_file):
dual_df = create_df(input_file)
overall_dual, leaf_dual = eval_result_dual(dual_df)
overall_standard, leaf_standard = eval_result_dual(dual_df, metric_type="standard")
overall_upd, leaf_upd = eval_result_dual(dual_df, metric_type="upd")
return overall_dual, overall_standard, overall_upd, leaf_dual
# add the new data into the queue
def add_queue(base_df, input_file, model_name):
dual_df = create_df(input_file)
base_df[f"{model_name}_prediction_standard"] = dual_df["prediction_standard"]
base_df[f"{model_name}_hit_standard"] = dual_df["hit_standard"]
base_df[f"{model_name}_prediction_upd"] = dual_df["prediction_upd"]
base_df[f"{model_name}_hit_upd"] = dual_df["hit_upd"]
base_df[f"{model_name}_hit"] = dual_df["hit"]
return base_df
# check whether the input file is correct or not
def validity_check(input_file, UPD_type, question_type):
input_df = create_df(input_file)
# check for the correct data size
data_num_dict = {"AAD": 820, "IASD": 919, "IVQD": 356}
assert len(input_df) == data_num_dict[UPD_type], "Different Data Size"
print("len(input)", len(input_df))
print("data_num_dict[UPD_type]", data_num_dict[UPD_type])
# check for missing columns
column_list = ["hit_upd", "hit_standard", "hit", "prediction_upd", "prediction_standard"]
assert all(x in input_df.columns for x in column_list), "Column Missing"
# check for missing values
assert not input_df[column_list].isnull().any().any(), "Missing values found in columns"
# check for the presence of the correct values
option_mapping = {"AAD": "None of the above", "IASD": "None of the above", "IVQD": "The image and question are irrelevant."}
instruction_mapping = {"AAD": "F. None of the above", "IASD": "F. None of the above", "IVQD": "F. The image and question are irrelevant."}
input_df["D_upd"] = input_df["D_upd"].fillna("")
if question_type == "Base":
assert not input_df["D_upd"].str.contains(option_mapping[UPD_type]).any(), f"{option_mapping[UPD_type]} found in Base"
assert not input_df["prediction_upd"].str.contains(instruction_mapping[UPD_type]).any(), f"{instruction_mapping[UPD_type]} found in Base"
elif question_type == "Option":
assert input_df["D_upd"].str.contains(option_mapping[UPD_type]).any(), f"{option_mapping[UPD_type]}not found in Option"
assert not input_df["prediction_upd"].str.contains(instruction_mapping[UPD_type]).any(), f"{instruction_mapping[UPD_type]} found in Option"
elif question_type == "Instruction":
assert not input_df["D_upd"].str.contains(option_mapping[UPD_type]).any(), f"{option_mapping[UPD_type]} found in Instruction"
return True
def add_new_eval(
input_file,
model_type: str,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
model_size: str,
upd_type: str,
LLM_type: str,
LLM_name_textbox: str,
question_type: str
):
if input_file is None:
warning_text = "Error! Empty file!"
print(warning_text)
return warning_text
else:
model_size = validate_model_size(model_size)
if upd_type == 'AAD':
csv_path = CSV_AAD_RESULT_PATH
elif upd_type == 'IASD':
csv_path = CSV_IASD_RESULT_PATH
elif upd_type == 'IVQD':
csv_path = CSV_IVQD_RESULT_PATH
validity_check(input_file, upd_type, question_type)
csv_data = pd.read_csv(csv_path)
overall_dual_acc, overall_standard_acc, overall_upd_acc, leaf_dual = calculate_score(input_file)
if LLM_type == 'Other':
LLM_name = LLM_name_textbox
else:
LLM_name = LLM_type
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_type,
model_name,
LLM_name,
model_size,
question_type,
overall_dual_acc,
overall_standard_acc,
overall_upd_acc,
]
new_data += leaf_dual
# If the same data already exists, return an error.
if new_data in csv_data.values.tolist():
warning_text = "Error! The same data already exists!"
print(warning_text)
return warning_text
# If the same model name already exists, return an error.
elif new_data[:5] in csv_data.values.tolist():
warning_text = "Error! The same data already exists! Please fill revision_name."
print(warning_text)
return warning_text
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(csv_path, index=False)
absolute_result_path = os.path.abspath(csv_path)
if not os.path.exists(absolute_result_path):
raise FileNotFoundError(f"File {absolute_result_path} not found")
repo.git_pull()
repo.git_add(absolute_result_path)
csv_queue_path = os.path.join(CSV_QUEUE_DIR, f"detail_results_{upd_type.lower()}_{question_type.lower()}.csv")
base_data = pd.read_csv(csv_queue_path)
base_data = add_queue(base_data, input_file, model_name)
base_data.to_csv(csv_queue_path, index=False)
absolute_queue_path = os.path.abspath(csv_queue_path)
if not os.path.exists(absolute_queue_path):
raise FileNotFoundError(f"File {absolute_queue_path} not found")
repo.git_add(absolute_queue_path)
repo.git_commit(f"add {model_name} results in {question_type}")
repo.git_push()
return 0
def get_baseline_aad_df():
repo.git_pull()
df = pd.read_csv(CSV_AAD_RESULT_PATH)
df = df.sort_values(by="Overall Dual Acc.", ascending=False)
present_columns = MODEL_INFO + checkbox_aad_group.value
df = df[present_columns]
return df
def get_all_aad_df():
repo.git_pull()
df = pd.read_csv(CSV_AAD_RESULT_PATH)
df = df.sort_values(by="Overall Dual Acc.", ascending=False)
return df
def get_baseline_iasd_df():
repo.git_pull()
df = pd.read_csv(CSV_IASD_RESULT_PATH)
df = df.sort_values(by="Overall Dual Acc.", ascending=False)
present_columns = MODEL_INFO + checkbox_iasd_group.value
df = df[present_columns]
return df
def get_all_iasd_df():
repo.git_pull()
df = pd.read_csv(CSV_IASD_RESULT_PATH)
df = df.sort_values(by="Overall Dual Acc.", ascending=False)
return df
def get_baseline_ivqd_df():
repo.git_pull()
df = pd.read_csv(CSV_IVQD_RESULT_PATH)
df = df.sort_values(by="Overall Dual Acc.", ascending=False)
present_columns = MODEL_INFO + checkbox_ivqd_group.value
df = df[present_columns]
return df
def get_all_ivqd_df():
repo.git_pull()
df = pd.read_csv(CSV_IVQD_RESULT_PATH)
df = df.sort_values(by="Overall Dual Acc.", ascending=False)
return df
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table mmupd bench
with gr.TabItem("π
MM-AAD Benchmark", elem_id="mmaad-benchmark-tab-table", id=1):
# selection for column part:
checkbox_aad_group = gr.CheckboxGroup(
choices=TASK_AAD_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
) # user can select the evaluation dimension
with gr.Row():
# selection for model size part:
model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label="Model Size",
interactive=True,
)
# selection for model size part:
question_type = gr.CheckboxGroup(
choices=QUESTION_TYPE,
value=QUESTION_TYPE,
label="Question Type",
interactive=True,
)
baseline_value = get_baseline_aad_df()
baseline_header = MODEL_INFO + checkbox_aad_group.value
baseline_datatype = ['markdown'] * 4 + ['number'] * len(checkbox_aad_group.value)
data_component_aad = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
def on_filter_model_size_method_change(selected_model_size, selected_question_type, selected_columns):
updated_data = get_all_aad_df()
# model_size & question_type:
def custom_filter(row, model_size_filters, question_type_filters):
model_size = row['Model Size']
question_type = row['Question Type']
model_size = model_size.upper()
if model_size == '-':
size_filter = '-' in model_size_filters
elif 'B' in model_size:
size = float(model_size.replace('B', ''))
size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10)
else:
size_filter = False
question_type_filter = question_type in question_type_filters
return size_filter and question_type_filter
mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, question_type_filters=selected_question_type)
updated_data = updated_data[mask]
# columns:
selected_columns = [item for item in TASK_AAD_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_AAD_TITILE_TYPE[COLUMN_AAD_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
model_size.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_aad_group], outputs=data_component_aad)
question_type.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_aad_group], outputs=data_component_aad)
checkbox_aad_group.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_aad_group], outputs=data_component_aad)
with gr.TabItem("π
MM-IASD Benchmark", elem_id="mmiasd-benchmark-tab-table", id=2):
checkbox_iasd_group = gr.CheckboxGroup(
choices=TASK_IASD_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
) # user can select the evaluation dimension
with gr.Row():
# selection for model size part:
model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label="Model Size",
interactive=True,
)
# selection for model size part:
question_type = gr.CheckboxGroup(
choices=QUESTION_TYPE,
value=QUESTION_TYPE,
label="Question Type",
interactive=True,
)
baseline_value = get_baseline_iasd_df()
baseline_header = MODEL_INFO + checkbox_iasd_group.value
baseline_datatype = ['markdown'] * 4 + ['number'] * len(checkbox_iasd_group.value)
data_component_iasd = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
def on_filter_model_size_method_change(selected_model_size, selected_question_type, selected_columns):
updated_data = get_all_iasd_df()
def custom_filter(row, model_size_filters, question_type_filters):
model_size = row['Model Size']
question_type = row['Question Type']
model_size = model_size.upper()
if model_size == '-':
size_filter = '-' in model_size_filters
elif 'B' in model_size:
size = float(model_size.replace('B', ''))
size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10)
else:
size_filter = False
question_type_filter = question_type in question_type_filters
return size_filter and question_type_filter
mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, question_type_filters=selected_question_type)
updated_data = updated_data[mask]
# columns:
selected_columns = [item for item in TASK_IASD_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_IASD_TITILE_TYPE[COLUMN_IASD_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
model_size.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_iasd_group], outputs=data_component_iasd)
question_type.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_iasd_group], outputs=data_component_iasd)
checkbox_iasd_group.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_iasd_group], outputs=data_component_iasd)
# Table 3
with gr.TabItem("π
MM-IVQD Benchmark", elem_id="mmiasd-benchmark-tab-table", id=3):
# selection for column part:
checkbox_ivqd_group = gr.CheckboxGroup(
choices=TASK_IVQD_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
) # user can select the evaluation dimension
with gr.Row():
# selection for model size part:
model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label="Model Size",
interactive=True,
)
# selection for model size part:
question_type = gr.CheckboxGroup(
choices=QUESTION_TYPE,
value=QUESTION_TYPE,
label="Question Type",
interactive=True,
)
baseline_value = get_baseline_ivqd_df()
baseline_header = MODEL_INFO + checkbox_ivqd_group.value
baseline_datatype = ['markdown'] * 4 + ['number'] * len(checkbox_ivqd_group.value)
data_component_ivqd = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
def on_filter_model_size_method_change(selected_model_size, selected_question_type, selected_columns):
updated_data = get_all_ivqd_df()
def custom_filter(row, model_size_filters, question_type_filters):
model_size = row['Model Size']
question_type = row['Question Type']
model_size = model_size.upper()
if model_size == '-':
size_filter = '-' in model_size_filters
elif 'B' in model_size:
size = float(model_size.replace('B', ''))
size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10)
else:
size_filter = False
question_type_filter = question_type in question_type_filters
return size_filter and question_type_filter
mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, question_type_filters=selected_question_type)
updated_data = updated_data[mask]
selected_columns = [item for item in TASK_IVQD_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_IVQD_TITILE_TYPE[COLUMN_IVQD_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
model_size.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_ivqd_group], outputs=data_component_ivqd)
question_type.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_ivqd_group], outputs=data_component_ivqd)
checkbox_ivqd_group.change(fn=on_filter_model_size_method_change, inputs=[model_size, question_type, checkbox_ivqd_group], outputs=data_component_ivqd)
# table 4
with gr.TabItem("π About", elem_id="mmupd-benchmark-tab-table", id=4):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# table 5
with gr.TabItem("π Submit here! ", elem_id="mmupd-benchmark-tab-table", id=5):
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_type = gr.Dropdown(
choices=["VLM", "LLM"],
label="Model type",
multiselect=False,
value="VLM",
interactive=True,
)
model_name_textbox = gr.Textbox(
label="Model name", placeholder="LLaMA-7B"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="LLaMA-7B"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
)
model_size = gr.Textbox(
label="Model size", placeholder="7B(Input content format must be 'number+B' or '-', default is '-')"
)
with gr.Column():
LLM_type = gr.Dropdown(
choices=["Vicuna-1.5-7B", "Vicuna-1.5-13B", "Flan-T5-XL", "LLaMA-7B", "Llama-13B", "Llama-3-8B", "Llama-3-70B", "Yi-34B", "Mistral-7B", "Other"],
label="LLM type",
multiselect=False,
value="Vicuna-1.5-13B",
interactive=True,
)
LLM_name_textbox = gr.Textbox(
label="LLM model (Required for Other)",
placeholder="GPT-4",
)
upd_type = gr.Dropdown(
choices=[
"AAD",
"IASD",
"IVQD",
],
label="UPD type",
multiselect=False,
value="AAD",
interactive=True,
)
question_type = gr.Dropdown(
choices=QUESTION_TYPE,
label="Question Type",
multiselect=False,
value=QUESTION_TYPE[0],
interactive=True,
)
with gr.Column():
input_file = gr.components.File(label="Click to Upload a JSON File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs = [
input_file,
model_type,
model_name_textbox,
revision_name_textbox,
model_link,
model_size,
upd_type,
LLM_type,
LLM_name_textbox,
question_type
],
)
def refresh_data():
value1 = get_baseline_aad_df()
value2 = get_baseline_iasd_df()
value3 = get_baseline_ivqd_df()
return value1, value2, value3
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
refresh_data, outputs=[data_component_aad, data_component_iasd, data_component_ivqd]
)
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch()
|