File size: 2,149 Bytes
3c6c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94bd921
b650828
94bd921
3c6c62c
 
 
94bd921
374594b
10299a5
819bc4b
3c6c62c
 
 
 
 
 
 
b650828
3c6c62c
b650828
071dc52
7760895
 
 
 
 
 
b650828
3c6c62c
 
b650828
3ba4902
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from dataclasses import dataclass
from enum import Enum

@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    task0 = Task("anli_r1", "acc", "ANLI")
    task1 = Task("logiqa", "acc_norm", "LogiQA")

NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------



# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">MMIE</h1>"""

# MJB_LOGO = '<img src="" alt="Logo" style="width: 30%; display: block; margin: auto;">'

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
# MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models
We present MMIE, a Massive Multimodal Interleaved understanding Evaluation benchmark, designed for Large Vision-Language Models (LVLMs). MMIE offers a robust framework for evaluating the interleaved comprehension and generation capabilities of LVLMs across diverse fields, supported by reliable automated metrics.

[Website](https://mmie-bench.github.io) | [Code](https://github.com/Lillianwei-h/MMIE) | [Dataset](https://huggingface.co/datasets/MMIE/MMIE) | [Results](https://huggingface.co/spaces/MMIE/Leaderboard) | [Evaluation Model](https://huggingface.co/MMIE/MMIE-Score) | [Paper](https://arxiv.org/abs/2410.10139)
"""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
"""

EVALUATION_QUEUE_TEXT = """
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = """
@article{xia2024mmie,
  title={MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models},
  author={Xia, Peng and Han, Siwei and Qiu, Shi and Zhou, Yiyang and Wang, Zhaoyang and Zheng, Wenhao and Chen, Zhaorun and Cui, Chenhang and Ding, Mingyu and Li, Linjie and Wang, Lijuan and Yao, Huaxiu},
  journal={arXiv preprint arXiv:2410.10139},
  year={2024}
}
"""


ABOUT_TEXT = """
"""