Anirudh1993 commited on
Commit
3570ead
·
verified ·
1 Parent(s): 0ee8cbb

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -284
app.py DELETED
@@ -1,284 +0,0 @@
1
- from utils.check_pydantic_version import use_pydantic_v1
2
- use_pydantic_v1() #This function has to be run before importing haystack. as haystack requires pydantic v1 to run
3
-
4
-
5
- from operator import index
6
- import streamlit as st
7
- import logging
8
- import os
9
-
10
- from annotated_text import annotation
11
- from json import JSONDecodeError
12
- from markdown import markdown
13
- from utils.config import parser
14
- from utils.haystack import start_document_store, query, initialize_pipeline, start_preprocessor_node, start_retriever, start_reader
15
- from utils.ui import reset_results, set_initial_state
16
- import pandas as pd
17
- import haystack
18
-
19
- from datetime import datetime
20
- import streamlit.components.v1 as components
21
- import streamlit_authenticator as stauth
22
- import pickle
23
-
24
- from streamlit_modal import Modal
25
- import numpy as np
26
-
27
-
28
-
29
- names = ['mlreply']
30
- usernames = ['docwhiz']
31
- with open('hashed_password.pkl','rb') as f:
32
- hashed_passwords = pickle.load(f)
33
-
34
-
35
-
36
- # Whether the file upload should be enabled or not
37
- DISABLE_FILE_UPLOAD = bool(os.getenv("DISABLE_FILE_UPLOAD"))
38
-
39
-
40
- def show_documents_list(retrieved_documents):
41
- data = []
42
- for i, document in enumerate(retrieved_documents):
43
- data.append([document.meta['name']])
44
- df = pd.DataFrame(data, columns=['Uploaded Document Name'])
45
- df.drop_duplicates(subset=['Uploaded Document Name'], inplace=True)
46
- df.index = np.arange(1, len(df) + 1)
47
- return df
48
-
49
- # Define a function to handle file uploads
50
- def upload_files():
51
- uploaded_files = upload_container.file_uploader(
52
- "upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden", key=1
53
- )
54
- return uploaded_files
55
-
56
-
57
- # Define a function to process a single file
58
- def process_file(data_file, preprocesor, document_store):
59
- # read file and add content
60
- file_contents = data_file.read().decode("utf-8")
61
- docs = [{
62
- 'content': str(file_contents),
63
- 'meta': {'name': str(data_file.name)}
64
- }]
65
- try:
66
- names = [item.meta.get('name') for item in document_store.get_all_documents()]
67
- #if args.store == 'inmemory':
68
- # doc = converter.convert(file_path=files, meta=None)
69
- if data_file.name in names:
70
- print(f"{data_file.name} already processed")
71
- else:
72
- print(f'preprocessing uploaded doc {data_file.name}.......')
73
- #print(data_file.read().decode("utf-8"))
74
- preprocessed_docs = preprocesor.process(docs)
75
- print('writing to document store.......')
76
- document_store.write_documents(preprocessed_docs)
77
- print('updating emebdding.......')
78
- document_store.update_embeddings(retriever)
79
- except Exception as e:
80
- print(e)
81
-
82
-
83
- # Define a function to upload the documents to haystack document store
84
- def upload_document():
85
- if data_files is not None:
86
- for data_file in data_files:
87
- # Upload file
88
- if data_file:
89
- try:
90
- #raw_json = upload_doc(data_file)
91
- # Call the process_file function for each uploaded file
92
- if args.store == 'inmemory':
93
- processed_data = process_file(data_file, preprocesor, document_store)
94
- #upload_container.write(str(data_file.name) + "    ✅ ")
95
- except Exception as e:
96
- upload_container.write(str(data_file.name) + "    ❌ ")
97
- upload_container.write("_This file could not be parsed, see the logs for more information._")
98
-
99
- # Define a function to reset the documents in haystack document store
100
- def reset_documents():
101
- print('\nReseting documents list at ' + str(datetime.now()) + '\n')
102
- st.session_state.data_files = None
103
- document_store.delete_documents()
104
-
105
- try:
106
- args = parser.parse_args()
107
- preprocesor = start_preprocessor_node()
108
- document_store = start_document_store(type=args.store)
109
- document_store.get_all_documents()
110
- retriever = start_retriever(document_store)
111
- reader = start_reader()
112
- st.set_page_config(
113
- page_title="MLReplySearch",
114
- layout="centered",
115
- page_icon=":shark:",
116
- menu_items={
117
- 'Get Help': 'https://www.extremelycoolapp.com/help',
118
- 'Report a bug': "https://www.extremelycoolapp.com/bug",
119
- 'About': "# This is a header. This is an *extremely* cool app!"
120
- }
121
- )
122
- st.sidebar.image("ml_logo.png", use_column_width=True)
123
-
124
- authenticator = stauth.Authenticate(names, usernames, hashed_passwords, "document_search", "random_text", cookie_expiry_days=1)
125
-
126
- name, authentication_status, username = authenticator.login("Login", "main")
127
-
128
- if authentication_status == False:
129
- st.error("Username/Password is incorrect")
130
-
131
- if authentication_status == None:
132
- st.warning("Please enter your username and password")
133
-
134
- if authentication_status:
135
-
136
- # Sidebar for Task Selection
137
- st.sidebar.header('Options:')
138
-
139
- # OpenAI Key Input
140
- openai_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password")
141
-
142
- if openai_key:
143
- task_options = ['Extractive', 'Generative']
144
- else:
145
- task_options = ['Extractive']
146
-
147
- task_selection = st.sidebar.radio('Select the task:', task_options)
148
-
149
- # Check the task and initialize pipeline accordingly
150
- if task_selection == 'Extractive':
151
- pipeline_extractive = initialize_pipeline("extractive", document_store, retriever, reader)
152
- elif task_selection == 'Generative' and openai_key: # Check for openai_key to ensure user has entered it
153
- pipeline_rag = initialize_pipeline("rag", document_store, retriever, reader, openai_key=openai_key)
154
-
155
-
156
- set_initial_state()
157
-
158
- modal = Modal("Manage Files", key="demo-modal")
159
- open_modal = st.sidebar.button("Manage Files", use_container_width=True)
160
- if open_modal:
161
- modal.open()
162
-
163
- st.write('# ' + args.name)
164
- if modal.is_open():
165
- with modal.container():
166
- if not DISABLE_FILE_UPLOAD:
167
- upload_container = st.container()
168
- data_files = upload_files()
169
- upload_document()
170
- st.session_state.sidebar_state = 'collapsed'
171
- st.table(show_documents_list(document_store.get_all_documents()))
172
-
173
- # File upload block
174
- # if not DISABLE_FILE_UPLOAD:
175
- # upload_container = st.sidebar.container()
176
- # upload_container.write("## File Upload:")
177
- # data_files = upload_files()
178
- # Button to update files in the documentStore
179
- # upload_container.button('Upload Files', on_click=upload_document, args=())
180
-
181
- # Button to reset the documents in DocumentStore
182
- st.sidebar.button("Reset documents", on_click=reset_documents, args=(), use_container_width=True)
183
-
184
- if "question" not in st.session_state:
185
- st.session_state.question = ""
186
- # Search bar
187
- question = st.text_input("Question", value=st.session_state.question, max_chars=100, on_change=reset_results, label_visibility="hidden")
188
-
189
- run_pressed = st.button("Run")
190
-
191
- run_query = (
192
- run_pressed or question != st.session_state.question #or task_selection != st.session_state.task
193
- )
194
-
195
- # Get results for query
196
- if run_query and question:
197
- if task_selection == 'Extractive':
198
- reset_results()
199
- st.session_state.question = question
200
- with st.spinner("🔎    Running your pipeline"):
201
- try:
202
- st.session_state.results_extractive = query(pipeline_extractive, question)
203
- st.session_state.task = task_selection
204
- except JSONDecodeError as je:
205
- st.error(
206
- "👓    An error occurred reading the results. Is the document store working?"
207
- )
208
- except Exception as e:
209
- logging.exception(e)
210
- st.error("🐞    An error occurred during the request.")
211
-
212
- elif task_selection == 'Generative':
213
- reset_results()
214
- st.session_state.question = question
215
- with st.spinner("🔎    Running your pipeline"):
216
- try:
217
- st.session_state.results_generative = query(pipeline_rag, question)
218
- st.session_state.task = task_selection
219
- except JSONDecodeError as je:
220
- st.error(
221
- "👓    An error occurred reading the results. Is the document store working?"
222
- )
223
- except Exception as e:
224
- if "API key is invalid" in str(e):
225
- logging.exception(e)
226
- st.error("🐞    incorrect API key provided. You can find your API key at https://platform.openai.com/account/api-keys.")
227
- else:
228
- logging.exception(e)
229
- st.error("🐞    An error occurred during the request.")
230
- # Display results
231
- if (st.session_state.results_extractive or st.session_state.results_generative) and run_query:
232
-
233
- # Handle Extractive Answers
234
- if task_selection == 'Extractive':
235
- results = st.session_state.results_extractive
236
-
237
- st.subheader("Extracted Answers:")
238
-
239
- if 'answers' in results:
240
- answers = results['answers']
241
- treshold = 0.2
242
- higher_then_treshold = any(ans.score > treshold for ans in answers)
243
- if not higher_then_treshold:
244
- st.markdown(f"<span style='color:red'>Please note none of the answers achieved a score higher then {int(treshold) * 100}%. Which probably means that the desired answer is not in the searched documents.</span>", unsafe_allow_html=True)
245
- for count, answer in enumerate(answers):
246
- if answer.answer:
247
- text, context = answer.answer, answer.context
248
- start_idx = context.find(text)
249
- end_idx = start_idx + len(text)
250
- score = round(answer.score, 3)
251
- st.markdown(f"**Answer {count + 1}:**")
252
- st.markdown(
253
- context[:start_idx] + str(annotation(body=text, label=f'SCORE {score}', background='#964448', color='#ffffff')) + context[end_idx:],
254
- unsafe_allow_html=True,
255
- )
256
- else:
257
- st.info(
258
- "🤔 &nbsp;&nbsp; Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
259
- )
260
-
261
- # Handle Generative Answers
262
- elif task_selection == 'Generative':
263
- results = st.session_state.results_generative
264
- st.subheader("Generated Answer:")
265
- if 'results' in results:
266
- st.markdown("**Answer:**")
267
- st.write(results['results'][0])
268
-
269
- # Handle Retrieved Documents
270
- if 'documents' in results:
271
- retrieved_documents = results['documents']
272
- st.subheader("Retriever Results:")
273
-
274
- data = []
275
- for i, document in enumerate(retrieved_documents):
276
- # Truncate the content
277
- truncated_content = (document.content[:150] + '...') if len(document.content) > 150 else document.content
278
- data.append([i + 1, document.meta['name'], truncated_content])
279
-
280
- # Convert data to DataFrame and display using Streamlit
281
- df = pd.DataFrame(data, columns=['Ranked Context', 'Document Name', 'Content'])
282
- st.table(df)
283
- except SystemExit as e:
284
- os._exit(e.code)