Spaces:
Sleeping
Sleeping
new_updated
Browse files
app.py
CHANGED
@@ -444,83 +444,164 @@ import os
|
|
444 |
import spaces
|
445 |
from huggingface_hub import login
|
446 |
login(token=os.getenv("HF_API_TOKEN"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
448 |
-
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
449 |
-
torch_dtype=torch.bfloat16).to("cuda")
|
450 |
processor = AutoProcessor.from_pretrained(ckpt)
|
451 |
|
452 |
-
|
453 |
@spaces.GPU
|
454 |
def bot_streaming(message, history, max_new_tokens=250):
|
455 |
-
|
456 |
txt = message["text"]
|
457 |
ext_buffer = f"{txt}"
|
458 |
|
459 |
-
messages= []
|
460 |
images = []
|
461 |
|
462 |
-
|
463 |
for i, msg in enumerate(history):
|
464 |
if isinstance(msg[0], tuple):
|
465 |
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
466 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
467 |
images.append(Image.open(msg[0][0]).convert("RGB"))
|
468 |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
469 |
-
# messages
|
470 |
-
|
471 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
472 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
473 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
474 |
|
475 |
-
#
|
476 |
if len(message["files"]) == 1:
|
477 |
-
|
478 |
-
if isinstance(message["files"][0], str): # examples
|
479 |
image = Image.open(message["files"][0]).convert("RGB")
|
480 |
-
else:
|
481 |
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
482 |
images.append(image)
|
483 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
484 |
else:
|
485 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
486 |
|
487 |
-
|
488 |
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
489 |
|
490 |
-
if images
|
491 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
492 |
else:
|
493 |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
|
|
494 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
495 |
|
496 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
497 |
generated_text = ""
|
498 |
|
|
|
499 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
500 |
thread.start()
|
501 |
buffer = ""
|
502 |
|
503 |
for new_text in streamer:
|
504 |
buffer += new_text
|
505 |
-
|
506 |
-
time.sleep(0.01)
|
507 |
yield buffer
|
508 |
|
509 |
-
|
510 |
-
demo = gr.ChatInterface(
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
|
|
|
|
|
|
|
|
|
444 |
import spaces
|
445 |
from huggingface_hub import login
|
446 |
login(token=os.getenv("HF_API_TOKEN"))
|
447 |
+
# ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
448 |
+
# model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
449 |
+
# torch_dtype=torch.bfloat16).to("cuda")
|
450 |
+
# processor = AutoProcessor.from_pretrained(ckpt)
|
451 |
+
|
452 |
+
|
453 |
+
# @spaces.GPU
|
454 |
+
# def bot_streaming(message, history, max_new_tokens=250):
|
455 |
+
|
456 |
+
# txt = message["text"]
|
457 |
+
# ext_buffer = f"{txt}"
|
458 |
+
|
459 |
+
# messages= []
|
460 |
+
# images = []
|
461 |
+
|
462 |
+
|
463 |
+
# for i, msg in enumerate(history):
|
464 |
+
# if isinstance(msg[0], tuple):
|
465 |
+
# messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
466 |
+
# messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
467 |
+
# images.append(Image.open(msg[0][0]).convert("RGB"))
|
468 |
+
# elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
469 |
+
# # messages are already handled
|
470 |
+
# pass
|
471 |
+
# elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
472 |
+
# messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
473 |
+
# messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
474 |
+
|
475 |
+
# # add current message
|
476 |
+
# if len(message["files"]) == 1:
|
477 |
+
|
478 |
+
# if isinstance(message["files"][0], str): # examples
|
479 |
+
# image = Image.open(message["files"][0]).convert("RGB")
|
480 |
+
# else: # regular input
|
481 |
+
# image = Image.open(message["files"][0]["path"]).convert("RGB")
|
482 |
+
# images.append(image)
|
483 |
+
# messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
484 |
+
# else:
|
485 |
+
# messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
486 |
+
|
487 |
+
|
488 |
+
# texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
489 |
+
|
490 |
+
# if images == []:
|
491 |
+
# inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
492 |
+
# else:
|
493 |
+
# inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
494 |
+
# streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
495 |
+
|
496 |
+
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
497 |
+
# generated_text = ""
|
498 |
+
|
499 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
500 |
+
# thread.start()
|
501 |
+
# buffer = ""
|
502 |
+
|
503 |
+
# for new_text in streamer:
|
504 |
+
# buffer += new_text
|
505 |
+
# generated_text_without_prompt = buffer
|
506 |
+
# time.sleep(0.01)
|
507 |
+
# yield buffer
|
508 |
+
|
509 |
+
|
510 |
+
# demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama",
|
511 |
+
# textbox=gr.MultimodalTextbox(),
|
512 |
+
# additional_inputs = [gr.Slider(
|
513 |
+
# minimum=10,
|
514 |
+
# maximum=500,
|
515 |
+
# value=250,
|
516 |
+
# step=10,
|
517 |
+
# label="Maximum number of new tokens to generate",
|
518 |
+
# )
|
519 |
+
# ],
|
520 |
+
# cache_examples=False,
|
521 |
+
# description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
|
522 |
+
# stop_btn="Stop Generation",
|
523 |
+
# fill_height=True,
|
524 |
+
# multimodal=True)
|
525 |
+
|
526 |
+
# demo.launch(debug=True,live=True)
|
527 |
+
|
528 |
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
529 |
+
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
|
|
|
530 |
processor = AutoProcessor.from_pretrained(ckpt)
|
531 |
|
|
|
532 |
@spaces.GPU
|
533 |
def bot_streaming(message, history, max_new_tokens=250):
|
|
|
534 |
txt = message["text"]
|
535 |
ext_buffer = f"{txt}"
|
536 |
|
537 |
+
messages = []
|
538 |
images = []
|
539 |
|
540 |
+
# Process history messages
|
541 |
for i, msg in enumerate(history):
|
542 |
if isinstance(msg[0], tuple):
|
543 |
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
544 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
545 |
images.append(Image.open(msg[0][0]).convert("RGB"))
|
546 |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
547 |
+
pass # Previous messages already handled
|
548 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # Text-only turn
|
|
|
549 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
550 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
551 |
|
552 |
+
# Add current message
|
553 |
if len(message["files"]) == 1:
|
554 |
+
if isinstance(message["files"][0], str): # Example images
|
|
|
555 |
image = Image.open(message["files"][0]).convert("RGB")
|
556 |
+
else: # Regular input
|
557 |
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
558 |
images.append(image)
|
559 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
560 |
else:
|
561 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
562 |
|
563 |
+
# Prepare input for the model
|
564 |
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
565 |
|
566 |
+
if not images:
|
567 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
568 |
else:
|
569 |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
570 |
+
|
571 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
572 |
|
573 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
574 |
generated_text = ""
|
575 |
|
576 |
+
# Start text generation in a separate thread
|
577 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
578 |
thread.start()
|
579 |
buffer = ""
|
580 |
|
581 |
for new_text in streamer:
|
582 |
buffer += new_text
|
583 |
+
time.sleep(0.01) # Small delay to simulate streaming
|
|
|
584 |
yield buffer
|
585 |
|
586 |
+
# Gradio interface setup
|
587 |
+
demo = gr.ChatInterface(
|
588 |
+
fn=bot_streaming,
|
589 |
+
title="Multimodal Llama",
|
590 |
+
textbox=gr.MultimodalTextbox(),
|
591 |
+
additional_inputs=[
|
592 |
+
gr.Slider(
|
593 |
+
minimum=10,
|
594 |
+
maximum=500,
|
595 |
+
value=250,
|
596 |
+
step=10,
|
597 |
+
label="Maximum number of new tokens to generate",
|
598 |
+
)
|
599 |
+
],
|
600 |
+
cache_examples=False,
|
601 |
+
description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply type your question.",
|
602 |
+
stop_btn="Stop Generation",
|
603 |
+
fill_height=True,
|
604 |
+
multimodal=True
|
605 |
+
)
|
606 |
+
|
607 |
+
demo.launch(debug=True,live=True)
|