Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import time | |
from dataclasses import dataclass | |
from glob import iglob | |
import argparse | |
import torch | |
from einops import rearrange | |
from fire import Fire | |
from PIL import ExifTags, Image | |
from flux.sampling import denoise, get_schedule, prepare, unpack | |
from flux.util import (configs, embed_watermark, load_ae, load_clip, | |
load_flow_model, load_t5) | |
from transformers import pipeline | |
from PIL import Image | |
import numpy as np | |
import os | |
NSFW_THRESHOLD = 0.85 | |
class SamplingOptions: | |
source_prompt: str | |
target_prompt: str | |
# prompt: str | |
width: int | |
height: int | |
num_steps: int | |
guidance: float | |
seed: int | None | |
def encode(init_image, torch_device, ae): | |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 | |
init_image = init_image.unsqueeze(0) | |
init_image = init_image.to(torch_device) | |
init_image = ae.encode(init_image.to()).to(torch.bfloat16) | |
return init_image | |
def main( | |
args, | |
seed: int | None = None, | |
device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
num_steps: int | None = None, | |
loop: bool = False, | |
offload: bool = False, | |
add_sampling_metadata: bool = True, | |
): | |
""" | |
Sample the flux model. Either interactively (set `--loop`) or run for a | |
single image. | |
Args: | |
name: Name of the model to load | |
height: height of the sample in pixels (should be a multiple of 16) | |
width: width of the sample in pixels (should be a multiple of 16) | |
seed: Set a seed for sampling | |
output_name: where to save the output image, `{idx}` will be replaced | |
by the index of the sample | |
prompt: Prompt used for sampling | |
device: Pytorch device | |
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled) | |
loop: start an interactive session and sample multiple times | |
guidance: guidance value used for guidance distillation | |
add_sampling_metadata: Add the prompt to the image Exif metadata | |
""" | |
torch.set_grad_enabled(False) | |
name = args.name | |
source_prompt = args.source_prompt | |
target_prompt = args.target_prompt | |
guidance = args.guidance | |
output_dir = args.output_dir | |
num_steps = args.num_steps | |
offload = args.offload | |
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device) | |
if name not in configs: | |
available = ", ".join(configs.keys()) | |
raise ValueError(f"Got unknown model name: {name}, chose from {available}") | |
torch_device = torch.device(device) | |
if num_steps is None: | |
num_steps = 4 if name == "flux-schnell" else 25 | |
# init all components | |
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512) | |
clip = load_clip(torch_device) | |
model = load_flow_model(name, device="cpu" if offload else torch_device) | |
ae = load_ae(name, device="cpu" if offload else torch_device) | |
if offload: | |
model.cpu() | |
torch.cuda.empty_cache() | |
ae.encoder.to(torch_device) | |
init_image = None | |
init_image = np.array(Image.open(args.source_img_dir).convert('RGB')) | |
shape = init_image.shape | |
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16 | |
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16 | |
init_image = init_image[:new_h, :new_w, :] | |
width, height = init_image.shape[0], init_image.shape[1] | |
init_image = encode(init_image, torch_device, ae) | |
rng = torch.Generator(device="cpu") | |
opts = SamplingOptions( | |
source_prompt=source_prompt, | |
target_prompt=target_prompt, | |
width=width, | |
height=height, | |
num_steps=num_steps, | |
guidance=guidance, | |
seed=seed, | |
) | |
if loop: | |
opts = parse_prompt(opts) | |
while opts is not None: | |
if opts.seed is None: | |
opts.seed = rng.seed() | |
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}") | |
t0 = time.perf_counter() | |
opts.seed = None | |
if offload: | |
ae = ae.cpu() | |
torch.cuda.empty_cache() | |
t5, clip = t5.to(torch_device), clip.to(torch_device) | |
info = {} | |
info['feature_path'] = args.feature_path | |
info['feature'] = {} | |
info['inject_step'] = args.inject | |
if not os.path.exists(args.feature_path): | |
os.mkdir(args.feature_path) | |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt) | |
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt) | |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) | |
# offload TEs to CPU, load model to gpu | |
if offload: | |
t5, clip = t5.cpu(), clip.cpu() | |
torch.cuda.empty_cache() | |
model = model.to(torch_device) | |
# inversion initial noise | |
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info) | |
inp_target["img"] = z | |
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell")) | |
# denoise initial noise | |
x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info) | |
if offload: | |
model.cpu() | |
torch.cuda.empty_cache() | |
ae.decoder.to(x.device) | |
# decode latents to pixel space | |
batch_x = unpack(x.float(), opts.width, opts.height) | |
for x in batch_x: | |
x = x.unsqueeze(0) | |
output_name = os.path.join(output_dir, "img_{idx}.jpg") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
idx = 0 | |
else: | |
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] | |
if len(fns) > 0: | |
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 | |
else: | |
idx = 0 | |
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): | |
x = ae.decode(x) | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t1 = time.perf_counter() | |
fn = output_name.format(idx=idx) | |
print(f"Done in {t1 - t0:.1f}s. Saving {fn}") | |
# bring into PIL format and save | |
x = x.clamp(-1, 1) | |
x = embed_watermark(x.float()) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0] | |
if nsfw_score < NSFW_THRESHOLD: | |
exif_data = Image.Exif() | |
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" | |
exif_data[ExifTags.Base.Make] = "Black Forest Labs" | |
exif_data[ExifTags.Base.Model] = name | |
if add_sampling_metadata: | |
exif_data[ExifTags.Base.ImageDescription] = source_prompt | |
img.save(fn, exif=exif_data, quality=95, subsampling=0) | |
idx += 1 | |
else: | |
print("Your generated image may contain NSFW content.") | |
if loop: | |
print("-" * 80) | |
opts = parse_prompt(opts) | |
else: | |
opts = None | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='RF-Edit') | |
parser.add_argument('--name', default='flux-dev', type=str, | |
help='flux model') | |
parser.add_argument('--source_img_dir', default='', type=str, | |
help='The path of the source image') | |
parser.add_argument('--source_prompt', type=str, | |
help='describe the content of the source image (or leaves it as null)') | |
parser.add_argument('--target_prompt', type=str, | |
help='describe the requirement of editing') | |
parser.add_argument('--feature_path', type=str, default='feature', | |
help='the path to save the feature ') | |
parser.add_argument('--guidance', type=float, default=5, | |
help='guidance scale') | |
parser.add_argument('--num_steps', type=int, default=25, | |
help='the number of timesteps for inversion and denoising') | |
parser.add_argument('--inject', type=int, default=20, | |
help='the number of timesteps which apply the feature sharing') | |
parser.add_argument('--output_dir', default='output', type=str, | |
help='the path of the edited image') | |
parser.add_argument('--offload', action='store_true', help='set it to True if the memory of GPU is not enough') | |
args = parser.parse_args() | |
main(args) | |