Spaces:
Sleeping
Sleeping
initial commit
Browse files- cifar10_model.h5 +3 -0
- main.py +45 -0
- requirments.txt +6 -0
cifar10_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b85226c770950248e809ff1f6ee1bbe4167ba35ec05886ff63d1d0230b180a2
|
3 |
+
size 2053808
|
main.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
+
from PIL import Image, ImageOps
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# st.set_option("deprecation.showfileUploaderEncoding", False)
|
8 |
+
@st.cache(allow_output_mutation=True)
|
9 |
+
|
10 |
+
def load_model():
|
11 |
+
model = tf.keras.models.load_model("F:/igebra/internship/ai ready/machine learning/image_classification_cnn/cifar10_model.h5")
|
12 |
+
return model
|
13 |
+
|
14 |
+
model = load_model()
|
15 |
+
|
16 |
+
st.title("CIFAR-10 Image Classification")
|
17 |
+
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
def import_and_predict(image_data, model):
|
23 |
+
size = (32, 32)
|
24 |
+
image = np.array(image_data)
|
25 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if len(image.shape) > 2 else cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
26 |
+
image = cv2.resize(image, size, interpolation=cv2.INTER_AREA)
|
27 |
+
image = image / 255.0
|
28 |
+
img_reshape = np.expand_dims(image, axis=0)
|
29 |
+
prediction = model.predict(img_reshape)
|
30 |
+
return prediction
|
31 |
+
|
32 |
+
|
33 |
+
if uploaded_file is None:
|
34 |
+
st.text("Please upload an image file")
|
35 |
+
else:
|
36 |
+
image = Image.open(uploaded_file)
|
37 |
+
st.image(image, use_column_width=True)
|
38 |
+
predictions = import_and_predict(image, model)
|
39 |
+
print(predictions)
|
40 |
+
print(np.argmax(predictions))
|
41 |
+
classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
42 |
+
print(classes[np.argmax(predictions)])
|
43 |
+
string = ("This image is most likely is :")
|
44 |
+
st.success(f"This image most likely contains: {classes[np.argmax(predictions)]}")
|
45 |
+
|
requirments.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
tensorflow
|
3 |
+
cv2
|
4 |
+
PIL
|
5 |
+
numpy
|
6 |
+
matplotlib
|