Manusala commited on
Commit
57ce089
·
verified ·
1 Parent(s): b62a45f

initial commit

Browse files
Files changed (3) hide show
  1. cifar10_model.h5 +3 -0
  2. main.py +45 -0
  3. requirments.txt +6 -0
cifar10_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b85226c770950248e809ff1f6ee1bbe4167ba35ec05886ff63d1d0230b180a2
3
+ size 2053808
main.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import cv2
4
+ from PIL import Image, ImageOps
5
+ import numpy as np
6
+
7
+ # st.set_option("deprecation.showfileUploaderEncoding", False)
8
+ @st.cache(allow_output_mutation=True)
9
+
10
+ def load_model():
11
+ model = tf.keras.models.load_model("F:/igebra/internship/ai ready/machine learning/image_classification_cnn/cifar10_model.h5")
12
+ return model
13
+
14
+ model = load_model()
15
+
16
+ st.title("CIFAR-10 Image Classification")
17
+ uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
18
+
19
+ import cv2
20
+ import numpy as np
21
+
22
+ def import_and_predict(image_data, model):
23
+ size = (32, 32)
24
+ image = np.array(image_data)
25
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if len(image.shape) > 2 else cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
26
+ image = cv2.resize(image, size, interpolation=cv2.INTER_AREA)
27
+ image = image / 255.0
28
+ img_reshape = np.expand_dims(image, axis=0)
29
+ prediction = model.predict(img_reshape)
30
+ return prediction
31
+
32
+
33
+ if uploaded_file is None:
34
+ st.text("Please upload an image file")
35
+ else:
36
+ image = Image.open(uploaded_file)
37
+ st.image(image, use_column_width=True)
38
+ predictions = import_and_predict(image, model)
39
+ print(predictions)
40
+ print(np.argmax(predictions))
41
+ classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
42
+ print(classes[np.argmax(predictions)])
43
+ string = ("This image is most likely is :")
44
+ st.success(f"This image most likely contains: {classes[np.argmax(predictions)]}")
45
+
requirments.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ tensorflow
3
+ cv2
4
+ PIL
5
+ numpy
6
+ matplotlib