Spaces:
Runtime error
Runtime error
Immortalise
commited on
Commit
·
1c79925
1
Parent(s):
3429aba
init
Browse files- adv_prompts/chatgpt_fewshot.md +0 -0
- adv_prompts/chatgpt_zeroshot.md +0 -0
- adv_prompts/t5_fewshot.md +0 -0
- adv_prompts/t5_zeroshot.md +0 -0
- adv_prompts/ul2_fewshot.md +0 -0
- adv_prompts/ul2_zeroshot.md +0 -0
- adv_prompts/vicuna_fewshot.md +0 -0
- adv_prompts/vicuna_zeroshot.md +0 -0
- app.py +46 -0
- parse.py +203 -0
adv_prompts/chatgpt_fewshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/chatgpt_zeroshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/t5_fewshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/t5_zeroshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/ul2_fewshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/ul2_zeroshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/vicuna_fewshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adv_prompts/vicuna_zeroshot.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from parse import retrieve
|
3 |
+
|
4 |
+
|
5 |
+
def main():
|
6 |
+
st.title("Streamlit App")
|
7 |
+
|
8 |
+
model_name = st.selectbox(
|
9 |
+
"Select Model",
|
10 |
+
options=["T5", "Vicuna", "UL2", "ChatGPT"],
|
11 |
+
index=0,
|
12 |
+
)
|
13 |
+
|
14 |
+
dataset_name = st.selectbox(
|
15 |
+
"Select Dataset",
|
16 |
+
options=[
|
17 |
+
"SST-2", "CoLA", "QQP", "MRPC", "MNLI", "QNLI",
|
18 |
+
"RTE", "WNLI", "MMLU", "SQuAD V2", "IWSLT 2017", "UN Multi", "Math"
|
19 |
+
],
|
20 |
+
index=0,
|
21 |
+
)
|
22 |
+
|
23 |
+
attack_name = st.selectbox(
|
24 |
+
"Select Attack",
|
25 |
+
options=[
|
26 |
+
"BertAttack", "CheckList", "DeepWordBug", "StressTest", "TextFooler", "TextBugger", "Semantic"
|
27 |
+
],
|
28 |
+
index=0,
|
29 |
+
)
|
30 |
+
|
31 |
+
prompt_type = st.selectbox(
|
32 |
+
"Select Prompt Type",
|
33 |
+
options=["zeroshot-task", "zeroshot-role", "fewshot-task", "fewshot-role"],
|
34 |
+
index=0,
|
35 |
+
)
|
36 |
+
|
37 |
+
st.write(f"Model: {model_name}")
|
38 |
+
st.write(f"Dataset: {dataset_name}")
|
39 |
+
st.write(f"Prompt Type: {prompt_type}")
|
40 |
+
|
41 |
+
if st.button("Retrieve"):
|
42 |
+
output = retrieve(model_name, dataset_name, attack_name, prompt_type)
|
43 |
+
st.write(f"Output: {output}")
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
main()
|
parse.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import re
|
3 |
+
|
4 |
+
|
5 |
+
def split_markdown_by_title(markdown_file):
|
6 |
+
with open(markdown_file, 'r', encoding='utf-8') as f:
|
7 |
+
content = f.read()
|
8 |
+
|
9 |
+
re_str = "# cola|# mnli|# mrpc|# qnli|# qqp|# rte|# sst2|# wnli|# mmlu|# squad_v2|# iwslt|# un_multi|# math"
|
10 |
+
|
11 |
+
datasets = ["# cola", "# mnli", "# mrpc", "# qnli", "# qqp", "# rte", "# sst2", "# wnli",
|
12 |
+
"# mmlu", "# squad_v2", "# iwslt", "# un_multi", "# math"]
|
13 |
+
|
14 |
+
# re_str = "# cola|# mnli|# mrpc|# qnli|# qqp|# rte|# sst2|# wnli"
|
15 |
+
# datasets = ["# cola", "# mnli", "# mrpc", "# qnli", "# qqp", "# rte", "# sst2", "# wnli"]
|
16 |
+
primary_sections = re.split(re_str, content)[1:]
|
17 |
+
assert len(primary_sections) == len(datasets)
|
18 |
+
|
19 |
+
all_sections_dict = {}
|
20 |
+
|
21 |
+
for dataset, primary_section in zip(datasets, primary_sections):
|
22 |
+
re_str = "## "
|
23 |
+
results = re.split(re_str, primary_section)
|
24 |
+
keywords = ["10 prompts", "bertattack", "checklist", "deepwordbug", "stresstest",
|
25 |
+
"textfooler", "textbugger", "translation"]
|
26 |
+
|
27 |
+
secondary_sections_dict = {}
|
28 |
+
for res in results:
|
29 |
+
for keyword in keywords:
|
30 |
+
if keyword in res.lower():
|
31 |
+
secondary_sections_dict[keyword] = res
|
32 |
+
break
|
33 |
+
|
34 |
+
all_sections_dict[dataset] = secondary_sections_dict
|
35 |
+
|
36 |
+
return all_sections_dict
|
37 |
+
# def prompts_understanding(sections_dict):
|
38 |
+
# for dataset in sections_dict.keys():
|
39 |
+
# # print(dataset)
|
40 |
+
# for title in sections_dict[dataset].keys():
|
41 |
+
# if title == "10 prompts":
|
42 |
+
# prompts = sections_dict[dataset][title].split("\n")
|
43 |
+
# num = 0
|
44 |
+
# task_prompts_acc = []
|
45 |
+
# role_prompts_acc = []
|
46 |
+
# for prompt in prompts:
|
47 |
+
# if "Acc: " not in prompt:
|
48 |
+
# continue
|
49 |
+
# else:
|
50 |
+
# import re
|
51 |
+
# num += 1
|
52 |
+
# match = re.search(r'Acc: (\d+\.\d+)%', prompt)
|
53 |
+
# if match:
|
54 |
+
# number = float(match.group(1))
|
55 |
+
# if num <= 10:
|
56 |
+
# task_prompts_acc.append(number)
|
57 |
+
# else:
|
58 |
+
# role_prompts_acc.append(number)
|
59 |
+
|
60 |
+
# print(task_prompts_acc)
|
61 |
+
# print(role_prompts_acc)
|
62 |
+
import os
|
63 |
+
def list_files(directory):
|
64 |
+
files = [os.path.join(directory, d) for d in os.listdir(directory) if not os.path.isdir(os.path.join(directory, d))]
|
65 |
+
return files
|
66 |
+
|
67 |
+
def convert_model_name(attack):
|
68 |
+
attack_name = {
|
69 |
+
"T5": "t5",
|
70 |
+
"UL2": "ul2",
|
71 |
+
"Vicuna": "vicuna",
|
72 |
+
"ChatGPT": "chatgpt",
|
73 |
+
}
|
74 |
+
return attack_name[attack]
|
75 |
+
|
76 |
+
def convert_attack_name(attack):
|
77 |
+
attack_name = {
|
78 |
+
"BertAttack": "bertattack",
|
79 |
+
"CheckList": "checklist",
|
80 |
+
"DeepWordBug": "deepwordbug",
|
81 |
+
"StressTest": "stresstest",
|
82 |
+
"TextFooler": "textfooler",
|
83 |
+
"TextBugger": "textbugger",
|
84 |
+
"Semantic": "translation",
|
85 |
+
}
|
86 |
+
return attack_name[attack]
|
87 |
+
|
88 |
+
def convert_dataset_name(dataset):
|
89 |
+
dataset_name = {
|
90 |
+
"CoLA": "# cola",
|
91 |
+
"MNLI": "# mnli",
|
92 |
+
"MRPC": "# mrpc",
|
93 |
+
"QNLI": "# qnli",
|
94 |
+
"QQP": "# qqp",
|
95 |
+
"RTE": "# rte",
|
96 |
+
"SST-2": "# sst2",
|
97 |
+
"WNLI": "# wnli",
|
98 |
+
"MMLU": "# mmlu",
|
99 |
+
"SQuAD V2": "# squad_v2",
|
100 |
+
"IWSLT": "# iwslt",
|
101 |
+
"UN Multi": "# un_multi",
|
102 |
+
"Math": "# math",
|
103 |
+
"Avg": "Avg",
|
104 |
+
}
|
105 |
+
return dataset_name[dataset]
|
106 |
+
|
107 |
+
|
108 |
+
def retrieve(model_name, dataset_name, attack_name, prompt_type):
|
109 |
+
model_name = convert_model_name(model_name)
|
110 |
+
dataset_name = convert_dataset_name(dataset_name)
|
111 |
+
attack_name = convert_attack_name(attack_name)
|
112 |
+
|
113 |
+
if "zero" in prompt_type:
|
114 |
+
shot = "zeroshot"
|
115 |
+
else:
|
116 |
+
shot = "fewshot"
|
117 |
+
|
118 |
+
if "task" in prompt_type:
|
119 |
+
prompt_type = "task"
|
120 |
+
else:
|
121 |
+
prompt_type = "role"
|
122 |
+
|
123 |
+
directory_path = "./db"
|
124 |
+
md_dir = os.path.join(directory_path, model_name + "_" + shot + ".md")
|
125 |
+
sections_dict = split_markdown_by_title(md_dir)
|
126 |
+
|
127 |
+
for cur_dataset in sections_dict.keys():
|
128 |
+
if cur_dataset == dataset_name:
|
129 |
+
dataset_dict = sections_dict[cur_dataset]
|
130 |
+
for cur_attack in dataset_dict.keys():
|
131 |
+
if cur_attack == attack_name:
|
132 |
+
pass
|
133 |
+
|
134 |
+
if attack_name == "translation":
|
135 |
+
results = dataset_dict[attack_name].split("\n")
|
136 |
+
|
137 |
+
atk_acc = []
|
138 |
+
|
139 |
+
for result in results:
|
140 |
+
if "acc: " not in result:
|
141 |
+
continue
|
142 |
+
|
143 |
+
import re
|
144 |
+
|
145 |
+
match_atk = re.search(r'acc: (\d+\.\d+)%', result)
|
146 |
+
|
147 |
+
number_atk = float(match_atk.group(1))
|
148 |
+
atk_acc.append(number_atk)
|
149 |
+
|
150 |
+
sorted_atk_acc = sorted(atk_acc)[:6]
|
151 |
+
|
152 |
+
elif title in ["bertattack", "checklist", "deepwordbug", "stresstest", "textfooler", "textbugger"]:
|
153 |
+
|
154 |
+
results = sections_dict[dataset][title].split("Original prompt: ")
|
155 |
+
num = 0
|
156 |
+
|
157 |
+
|
158 |
+
for result in results:
|
159 |
+
if "Attacked prompt: " not in result:
|
160 |
+
continue
|
161 |
+
num += 1
|
162 |
+
import re
|
163 |
+
match_origin = re.search(r'Original acc: (\d+\.\d+)%', result)
|
164 |
+
match_atk = re.search(r'attacked acc: (\d+\.\d+)%', result)
|
165 |
+
if match_origin and match_atk:
|
166 |
+
number_origin = float(match_origin.group(1))
|
167 |
+
number_atk = float(match_atk.group(1))
|
168 |
+
summary[title][dataset].append((number_origin - number_atk)/number_origin)
|
169 |
+
summary[title]["Avg"].append((number_origin - number_atk)/number_origin)
|
170 |
+
|
171 |
+
# print(model_shot, dataset, title, len(summary[attack][dataset]), num)
|
172 |
+
|
173 |
+
# for atk in summary.keys():
|
174 |
+
# for dataset in summary[atk].keys():
|
175 |
+
# # if atk == "translation":
|
176 |
+
# print(atk, dataset, len(summary[atk][dataset]))
|
177 |
+
# # print(summary[atk][dataset][:10])
|
178 |
+
|
179 |
+
output_dict = {}
|
180 |
+
|
181 |
+
sorted_atk_name = ["TextBugger", "DeepWordBug", "TextFooler", "BertAttack", "CheckList", "StressTest", "Semantic"]
|
182 |
+
sorted_dataset_name = ["SST-2", "CoLA", "QQP", "MRPC", "MNLI", "QNLI", "RTE", "WNLI", "MMLU", "SQuAD V2", "IWSLT", "UN Multi", "Math"]
|
183 |
+
|
184 |
+
for atk in sorted_atk_name:
|
185 |
+
output_dict[atk] = {}
|
186 |
+
for dataset in sorted_dataset_name:
|
187 |
+
output_dict[atk][dataset] = ""
|
188 |
+
|
189 |
+
for sorted_atk in sorted_atk_name:
|
190 |
+
for attack, dataset_drop_rates in summary.items():
|
191 |
+
# attack = convert_attack_name(attack)
|
192 |
+
if convert_attack_name(attack) == sorted_atk:
|
193 |
+
for sorted_dataset in sorted_dataset_name:
|
194 |
+
for dataset, drop_rates in dataset_drop_rates.items():
|
195 |
+
if convert_dataset_name(dataset) == sorted_dataset:
|
196 |
+
if len(drop_rates) > 0:
|
197 |
+
output_dict[sorted_atk][sorted_dataset] = "{:.2f}".format(sum(drop_rates)/len(drop_rates)) + "\scriptsize{$\pm$" + "{:.2f}".format(np.std(drop_rates)) + "}"
|
198 |
+
else:
|
199 |
+
output_dict[sorted_atk][sorted_dataset] = "-"
|
200 |
+
|
201 |
+
total_drop_rate = summary[attack]["Avg"]
|
202 |
+
output_dict[sorted_atk]["Avg"] = "{:.2f}".format(np.mean(total_drop_rate)) + "\scriptsize{$\pm$" + "{:.2f}".format(np.std(total_drop_rate)) + "}"
|
203 |
+
|