Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
import requests | |
import re | |
import pandas as pd | |
from huggingface_hub import ModelCard | |
import os | |
def pass_emoji(passed): | |
if passed is True: | |
passed = "โ " | |
else: | |
passed = "โ" | |
return passed | |
api = HfApi() | |
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
U7_USERNAMES = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN) | |
def get_user_models(hf_username, task): | |
""" | |
List the user's models for a given task | |
:param hf_username: User HF username | |
""" | |
models = api.list_models(author=hf_username, filter=[task]) | |
user_model_ids = [x.modelId for x in models] | |
match task: | |
case "audio-classification": | |
dataset = 'marsyas/gtzan' | |
case "automatic-speech-recognition": | |
dataset = 'PolyAI/minds14' | |
case "text-to-speech": | |
dataset = "" | |
case _: | |
print("Unsupported task") | |
dataset_specific_models = [] | |
if dataset == "": | |
return user_model_ids | |
else: | |
for model in user_model_ids: | |
meta = get_metadata(model) | |
if meta is None: | |
continue | |
try: | |
if meta["datasets"] == [dataset]: | |
dataset_specific_models.append(model) | |
except: | |
continue | |
return dataset_specific_models | |
def calculate_best_result(user_models, task): | |
""" | |
Calculate the best results of a unit for a given task | |
:param user_model_ids: models of a user | |
""" | |
best_model = "" | |
if task == "audio-classification": | |
best_result = -100 | |
larger_is_better = True | |
elif task == "automatic-speech-recognition": | |
best_result = 100 | |
larger_is_better = False | |
for model in user_models: | |
meta = get_metadata(model) | |
if meta is None: | |
continue | |
metric = parse_metrics(model, task) | |
if larger_is_better: | |
if metric > best_result: | |
best_result = metric | |
best_model = meta['model-index'][0]["name"] | |
else: | |
if metric < best_result: | |
best_result = metric | |
best_model = meta['model-index'][0]["name"] | |
return best_result, best_model | |
def get_metadata(model_id): | |
""" | |
Get model metadata (contains evaluation data) | |
:param model_id | |
""" | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
def extract_metric(model_card_content, task): | |
""" | |
Extract the metric value from the models' model card | |
:param model_card_content: model card content | |
""" | |
accuracy_pattern = r"Accuracy: (\d+\.\d+)" | |
wer_pattern = r"Wer: (\d+\.\d+)" | |
if task == "audio-classification": | |
pattern = accuracy_pattern | |
elif task == "automatic-speech-recognition": | |
pattern = wer_pattern | |
match = re.search(pattern, model_card_content) | |
if match: | |
metric = match.group(1) | |
return float(metric) | |
else: | |
return None | |
def parse_metrics(model, task): | |
""" | |
Get model card and parse it | |
:param model_id: model id | |
""" | |
card = ModelCard.load(model) | |
return extract_metric(card.content, task) | |
def certification(hf_username): | |
results_certification = [ | |
{ | |
"unit": "Unit 4: Audio Classification", | |
"task": "audio-classification", | |
"baseline_metric": 0.87, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 5: Automatic Speech Recognition", | |
"task": "automatic-speech-recognition", | |
"baseline_metric": 0.37, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 6: Text-to-Speech", | |
"task": "text-to-speech", | |
"baseline_metric": 0, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 7: Audio applications", | |
"task": "demo", | |
"baseline_metric": 0, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
] | |
for unit in results_certification: | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
match unit["task"]: | |
case "audio-classification": | |
try: | |
user_ac_models = get_user_models(hf_username, task = "audio-classification") | |
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification") | |
unit["best_result"] = best_result | |
unit["best_model_id"] = best_model_id | |
if unit["best_result"] >= unit["baseline_metric"]: | |
unit["passed_"] = True | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton") | |
case "automatic-speech-recognition": | |
try: | |
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition") | |
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition") | |
unit["best_result"] = best_result | |
unit["best_model_id"] = best_model_id | |
if unit["best_result"] <= unit["baseline_metric"]: | |
unit["passed_"] = True | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition") | |
case "text-to-speech": | |
try: | |
user_tts_models = get_user_models(hf_username, task = "text-to-speech") | |
if user_tts_models: | |
unit["best_result"] = 0 | |
unit["best_model_id"] = user_tts_models[0] | |
unit["passed_"] = True | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition") | |
case "demo": | |
u7_users = pd.read_csv(U7_USERNAMES) | |
if hf_username in u7_users['username']: | |
unit["best_result"] = 0 | |
unit["best_model_id"] = "Demo check passed, no model id" | |
unit["passed_"] = True | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
case _: | |
print("Unknown task") | |
print(results_certification) | |
df = pd.DataFrame(results_certification) | |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']] | |
return df | |
with gr.Blocks() as demo: | |
gr.Markdown(f""" | |
# ๐ Check your progress in the Audio Course ๐ | |
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**. | |
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**. | |
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric. | |
For the Unit 7 assignment, first, check your demo with Unit 7 assessment Space: https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment | |
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public. | |
To check your progress, type your Hugging Face Username here (in my case MariaK) | |
""") | |
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username") | |
check_progress_button = gr.Button(value="Check my progress") | |
output = gr.components.Dataframe(value=certification(hf_username)) | |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output) | |
demo.launch() |