MariaK commited on
Commit
d071597
·
1 Parent(s): 3d7abcf

Updates for Audio course

Browse files
Files changed (1) hide show
  1. app.py +85 -191
app.py CHANGED
@@ -1,44 +1,45 @@
1
  import gradio as gr
2
  from huggingface_hub import HfApi, hf_hub_download
3
  from huggingface_hub.repocard import metadata_load
4
-
 
5
  import pandas as pd
 
 
 
 
 
6
 
7
- from utils import *
 
 
 
 
 
 
 
 
8
 
9
  api = HfApi()
10
 
11
- def get_user_models(hf_username, env_tag, lib_tag):
12
  """
13
- List the Reinforcement Learning models
14
- from user given environment and lib
15
  :param hf_username: User HF username
16
- :param env_tag: Environment tag
17
- :param lib_tag: Library tag
18
  """
19
- api = HfApi()
20
- models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
21
-
22
- user_model_ids = [x.modelId for x in models]
23
- return user_model_ids
24
-
25
-
26
- def get_user_sf_models(hf_username, env_tag, lib_tag):
27
- api = HfApi()
28
- models_sf = []
29
- models = api.list_models(author=hf_username, filter=["reinforcement-learning", lib_tag])
30
 
 
31
  user_model_ids = [x.modelId for x in models]
 
32
 
33
  for model in user_model_ids:
34
  meta = get_metadata(model)
35
  if meta is None:
36
  continue
37
- result = meta["model-index"][0]["results"][0]["dataset"]["name"]
38
- if result == env_tag:
39
- models_sf.append(model)
40
-
41
- return models_sf
42
 
43
 
44
  def get_metadata(model_id):
@@ -54,232 +55,125 @@ def get_metadata(model_id):
54
  return None
55
 
56
 
57
- def parse_metrics_accuracy(meta):
58
- """
59
- Get model results and parse it
60
- :param meta: model metadata
61
- """
62
- if "model-index" not in meta:
63
- return None
64
- result = meta["model-index"][0]["results"]
65
- metrics = result[0]["metrics"]
66
- accuracy = metrics[0]["value"]
67
-
68
- return accuracy
69
 
70
 
71
- def parse_rewards(accuracy):
72
  """
73
- Parse mean_reward and std_reward
74
- :param accuracy: model results
75
  """
76
- default_std = -1000
77
- default_reward= -1000
78
- if accuracy != None:
79
- accuracy = str(accuracy)
80
- parsed = accuracy.split(' +/- ')
81
- if len(parsed)>1:
82
- mean_reward = float(parsed[0])
83
- std_reward = float(parsed[1])
84
- elif len(parsed)==1: #only mean reward
85
- mean_reward = float(parsed[0])
86
- std_reward = float(0)
87
- else:
88
- mean_reward = float(default_std)
89
- std_reward = float(default_reward)
90
- else:
91
- mean_reward = float(default_std)
92
- std_reward = float(default_reward)
93
-
94
- return mean_reward, std_reward
95
 
96
- def calculate_best_result(user_model_ids):
 
97
  """
98
  Calculate the best results of a unit
99
- best_result = mean_reward - std_reward
100
  :param user_model_ids: RL models of a user
101
  """
102
- best_result = -1000
103
- best_model_id = ""
 
 
104
  for model in user_model_ids:
105
  meta = get_metadata(model)
106
  if meta is None:
107
  continue
108
- accuracy = parse_metrics_accuracy(meta)
109
- mean_reward, std_reward = parse_rewards(accuracy)
110
- result = mean_reward - std_reward
111
- if result > best_result:
112
- best_result = result
113
- best_model_id = model
114
 
115
- return best_result, best_model_id
116
 
117
- def check_if_passed(model):
118
- """
119
- Check if result >= baseline
120
- to know if you pass
121
- :param model: user model
122
- """
123
- if model["best_result"] >= model["min_result"]:
124
- model["passed_"] = True
125
 
126
  def certification(hf_username):
127
  results_certification = [
128
  {
129
- "unit": "Unit 1",
130
- "env": "LunarLander-v2",
131
- "library": "stable-baselines3",
132
- "min_result": 200,
133
  "best_result": 0,
134
  "best_model_id": "",
135
  "passed_": False
136
  },
137
  {
138
- "unit": "Unit 2",
139
- "env": "Taxi-v3",
140
- "library": "q-learning",
141
- "min_result": 4,
142
  "best_result": 0,
143
  "best_model_id": "",
144
  "passed_": False
145
  },
146
  {
147
- "unit": "Unit 3",
148
- "env": "SpaceInvadersNoFrameskip-v4",
149
- "library": "stable-baselines3",
150
- "min_result": 200,
151
  "best_result": 0,
152
  "best_model_id": "",
153
  "passed_": False
154
  },
155
  {
156
- "unit": "Unit 4",
157
- "env": "CartPole-v1",
158
- "library": "reinforce",
159
- "min_result": 350,
160
  "best_result": 0,
161
  "best_model_id": "",
162
  "passed_": False
163
  },
164
- {
165
- "unit": "Unit 4",
166
- "env": "Pixelcopter-PLE-v0",
167
- "library": "reinforce",
168
- "min_result": 5,
169
- "best_result": 0,
170
- "best_model_id": "",
171
- "passed_": False
172
- },
173
- {
174
- "unit": "Unit 5",
175
- "env": "ML-Agents-SnowballTarget",
176
- "library": "ml-agents",
177
- "min_result": -100,
178
- "best_result": 0,
179
- "best_model_id": "",
180
- "passed_": False
181
- },
182
- {
183
- "unit": "Unit 5",
184
- "env": "ML-Agents-Pyramids",
185
- "library": "ml-agents",
186
- "min_result": -100,
187
- "best_result": 0,
188
- "best_model_id": "",
189
- "passed_": False
190
- },
191
- {
192
- "unit": "Unit 6",
193
- "env": "AntBulletEnv-v0",
194
- "library": "stable-baselines3",
195
- "min_result": 650,
196
- "best_result": 0,
197
- "best_model_id": "",
198
- "passed_": False
199
- },
200
- {
201
- "unit": "Unit 6",
202
- "env": "PandaReachDense-v2",
203
- "library": "stable-baselines3",
204
- "min_result": -3.5,
205
- "best_result": 0,
206
- "best_model_id": "",
207
- "passed_": False
208
- },
209
- {
210
- "unit": "Unit 7",
211
- "env": "ML-Agents-SoccerTwos",
212
- "library": "ml-agents",
213
- "min_result": -100,
214
- "best_result": 0,
215
- "best_model_id": "",
216
- "passed_": False
217
- },
218
- {
219
- "unit": "Unit 8 PI",
220
- "env": "LunarLander-v2",
221
- "library": "deep-rl-course",
222
- "min_result": -500,
223
- "best_result": 0,
224
- "best_model_id": "",
225
- "passed_": False
226
- },
227
- {
228
- "unit": "Unit 8 PII",
229
- "env": "doom_health_gathering_supreme",
230
- "library": "sample-factory",
231
- "min_result": 5,
232
- "best_result": 0,
233
- "best_model_id": "",
234
- "passed_": False
235
- },
236
  ]
 
237
  for unit in results_certification:
238
- if unit["unit"] != "Unit 8 PII":
239
- # Get user model
240
- user_models = get_user_models(hf_username, unit['env'], unit['library'])
241
- # For sample factory vizdoom we don't have env tag for now
 
 
 
 
242
  else:
243
- user_models = get_user_sf_models(hf_username, unit['env'], unit['library'])
244
-
245
-
246
- # Calculate the best result and get the best_model_id
247
- best_result, best_model_id = calculate_best_result(user_models)
248
-
249
- # Save best_result and best_model_id
250
- unit["best_result"] = best_result
251
- unit["best_model_id"] = make_clickable_model(best_model_id)
252
-
253
- # Based on best_result do we pass the unit?
254
- check_if_passed(unit)
255
- unit["passed"] = pass_emoji(unit["passed_"])
256
 
257
  print(results_certification)
258
 
259
  df = pd.DataFrame(results_certification)
260
- df = df[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']]
261
  return df
262
 
263
 
264
  with gr.Blocks() as demo:
265
  gr.Markdown(f"""
266
- # 🏆 Check your progress in the Deep Reinforcement Learning Course 🏆
267
  You can check your progress here.
268
 
269
- - To get a certificate of completion, you must **pass 80% of the assignments before June 1st 2023**.
270
- - To get an honors certificate, you must **pass 100% of the assignments before June 1st 2023**.
271
 
272
- To pass an assignment your model result (mean_reward - std_reward) must be >= min_result
273
 
274
- **When min_result = -100 it means that you just need to push a model to pass this hands-on. No need to reach a certain result.**
275
 
276
- Just type your Hugging Face Username 🤗 (in my case ThomasSimonini)
277
  """)
278
 
279
- hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username")
280
- #email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)")
281
  check_progress_button = gr.Button(value="Check my progress")
282
- output = gr.components.Dataframe(value= certification(hf_username), headers=["Pass?", "Unit", "Environment", "Baseline", "Your best result", "Your best model id"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"])
283
  check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
284
 
285
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import HfApi, hf_hub_download
3
  from huggingface_hub.repocard import metadata_load
4
+ import requests
5
+ import re
6
  import pandas as pd
7
+ from huggingface_hub import ModelCard
8
+
9
+ def make_clickable_model(model_name):
10
+ # remove user from model name
11
+ model_name_show = ' '.join(model_name.split('/')[1:])
12
 
13
+ link = "https://huggingface.co/" + model_name
14
+ return f'<a target="_blank" href="{link}">{model_name_show}</a>'
15
+
16
+ def pass_emoji(passed):
17
+ if passed is True:
18
+ passed = "✅"
19
+ else:
20
+ passed = "❌"
21
+ return passed
22
 
23
  api = HfApi()
24
 
25
+ def get_user_audio_classification_models(hf_username):
26
  """
27
+ List the user's Audio Classification models
 
28
  :param hf_username: User HF username
 
 
29
  """
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ models = api.list_models(author=hf_username, filter=["audio-classification"])
32
  user_model_ids = [x.modelId for x in models]
33
+ models_gtzan = []
34
 
35
  for model in user_model_ids:
36
  meta = get_metadata(model)
37
  if meta is None:
38
  continue
39
+ if meta["datasets"] == ['marsyas/gtzan']:
40
+ models_gtzan.append(model)
41
+
42
+ return models_gtzan
 
43
 
44
 
45
  def get_metadata(model_id):
 
55
  return None
56
 
57
 
58
+ def extract_accuracy(model_card_content):
59
+ """
60
+ Extract the accuracy value from the models' model card
61
+ :param model_card_content: model card content
62
+ """
63
+ accuracy_pattern = r"Accuracy: (\d+\.\d+)"
64
+ match = re.search(accuracy_pattern, model_card_content)
65
+ if match:
66
+ accuracy = match.group(1)
67
+ return float(accuracy)
68
+ else:
69
+ return None
70
 
71
 
72
+ def parse_metrics_accuracy(model_id):
73
  """
74
+ Get model card and parse it
75
+ :param model_id: model id
76
  """
77
+ card = ModelCard.load(model_id)
78
+ return extract_accuracy(card.content)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+
81
+ def calculate_best_acc_result(user_model_ids):
82
  """
83
  Calculate the best results of a unit
 
84
  :param user_model_ids: RL models of a user
85
  """
86
+
87
+ best_result = -100
88
+ best_model = ""
89
+
90
  for model in user_model_ids:
91
  meta = get_metadata(model)
92
  if meta is None:
93
  continue
94
+ accuracy = parse_metrics_accuracy(model)
95
+ if accuracy > best_result:
96
+ best_result = accuracy
97
+ best_model = meta['model-index'][0]["name"]
 
 
98
 
99
+ return best_result, best_model
100
 
 
 
 
 
 
 
 
 
101
 
102
  def certification(hf_username):
103
  results_certification = [
104
  {
105
+ "unit": "Unit 4: Audio Classification",
106
+ "task": "audio-classification",
107
+ "baseline_metric": 0.87,
 
108
  "best_result": 0,
109
  "best_model_id": "",
110
  "passed_": False
111
  },
112
  {
113
+ "unit": "Unit 5: TBD",
114
+ "task": "TBD",
115
+ "baseline_metric": 0.99,
 
116
  "best_result": 0,
117
  "best_model_id": "",
118
  "passed_": False
119
  },
120
  {
121
+ "unit": "Unit 6: TBD",
122
+ "task": "TBD",
123
+ "baseline_metric": 0.99,
 
124
  "best_result": 0,
125
  "best_model_id": "",
126
  "passed_": False
127
  },
128
  {
129
+ "unit": "Unit 7: TBD",
130
+ "task": "TBD",
131
+ "baseline_metric": 0.99,
 
132
  "best_result": 0,
133
  "best_model_id": "",
134
  "passed_": False
135
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  ]
137
+
138
  for unit in results_certification:
139
+ if unit["task"] == "audio-classification":
140
+ user_models = get_user_audio_classification_models(hf_username)
141
+ best_result, best_model_id = calculate_best_acc_result(user_models)
142
+ unit["best_result"] = best_result
143
+ unit["best_model_id"] = make_clickable_model(best_model_id)
144
+ if unit["best_result"] >= unit["baseline_metric"]:
145
+ unit["passed_"] = True
146
+ unit["passed"] = pass_emoji(unit["passed_"])
147
  else:
148
+ # TBD for other units
149
+ unit["passed"] = pass_emoji(unit["passed_"])
150
+ continue
 
 
 
 
 
 
 
 
 
 
151
 
152
  print(results_certification)
153
 
154
  df = pd.DataFrame(results_certification)
155
+ df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
156
  return df
157
 
158
 
159
  with gr.Blocks() as demo:
160
  gr.Markdown(f"""
161
+ # 🏆 Check your progress in the Audio Course 🏆
162
  You can check your progress here.
163
 
164
+ - To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
165
+ - To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
166
 
167
+ To pass an assignment, your model's metric should be equal or higher than the baseline metric
168
 
169
+ **When min_result = -100 it means that you just need to push a model to pass this hands-on.**
170
 
171
+ Just type your Hugging Face Username 🤗 (in my case MariaK)
172
  """)
173
 
174
+ hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
 
175
  check_progress_button = gr.Button(value="Check my progress")
176
+ output = gr.components.Dataframe(value=certification(hf_username))
177
  check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
178
 
179
  demo.launch()