Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from packaging import version | |
# import torch._dynamo | |
# torch._dynamo.config.suppress_errors = True | |
# torch._dynamo.config.cache_size_limit = 512 | |
OPENAIUNETWRAPPER = "sgm.modules.diffusionmodules.wrappers.OpenAIWrapper" | |
class IdentityWrapper(nn.Module): | |
def __init__(self, diffusion_model, compile_model: bool = False): | |
super().__init__() | |
compile = ( | |
torch.compile | |
if (version.parse(torch.__version__) >= version.parse("2.0.0")) | |
and compile_model | |
else lambda x: x | |
) | |
self.diffusion_model = compile(diffusion_model) | |
def forward(self, *args, **kwargs): | |
return self.diffusion_model(*args, **kwargs) | |
class OpenAIWrapper(IdentityWrapper): | |
def forward( | |
self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs | |
) -> torch.Tensor: | |
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1) | |
return self.diffusion_model( | |
x, | |
timesteps=t, | |
context=c.get("crossattn", None), | |
y=c.get("vector", None), | |
**kwargs, | |
) | |
class OpenAIHalfWrapper(IdentityWrapper): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.diffusion_model = self.diffusion_model.half() | |
def forward( | |
self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs | |
) -> torch.Tensor: | |
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1) | |
_context = c.get("crossattn", None) | |
_y = c.get("vector", None) | |
if _context is not None: | |
_context = _context.half() | |
if _y is not None: | |
_y = _y.half() | |
x = x.half() | |
t = t.half() | |
out = self.diffusion_model( | |
x, | |
timesteps=t, | |
context=_context, | |
y=_y, | |
**kwargs, | |
) | |
return out.float() | |
class ControlWrapper(nn.Module): | |
def __init__(self, diffusion_model, compile_model: bool = False, dtype=torch.float32): | |
super().__init__() | |
self.compile = ( | |
torch.compile | |
if (version.parse(torch.__version__) >= version.parse("2.0.0")) | |
and compile_model | |
else lambda x: x | |
) | |
self.diffusion_model = self.compile(diffusion_model) | |
self.control_model = None | |
self.dtype = dtype | |
def load_control_model(self, control_model): | |
self.control_model = self.compile(control_model) | |
def forward( | |
self, x: torch.Tensor, t: torch.Tensor, c: dict, control_scale=1, **kwargs | |
) -> torch.Tensor: | |
with torch.autocast("cuda", dtype=self.dtype): | |
control = self.control_model(x=c.get("control", None), timesteps=t, xt=x, | |
control_vector=c.get("control_vector", None), | |
mask_x=c.get("mask_x", None), | |
context=c.get("crossattn", None), | |
y=c.get("vector", None)) | |
out = self.diffusion_model( | |
x, | |
timesteps=t, | |
context=c.get("crossattn", None), | |
y=c.get("vector", None), | |
control=control, | |
control_scale=control_scale, | |
**kwargs, | |
) | |
return out.float() | |