Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Fix launch error
Browse files
llava/model/language_model/llava_llama.py
CHANGED
@@ -1,140 +1,140 @@
|
|
1 |
-
# Copyright 2023 Haotian Liu
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
|
16 |
-
from typing import List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
import torch.nn as nn
|
20 |
-
from torch.nn import CrossEntropyLoss
|
21 |
-
|
22 |
-
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
-
LlamaConfig, LlamaModel, LlamaForCausalLM
|
24 |
-
|
25 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
26 |
-
|
27 |
-
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
28 |
-
|
29 |
-
|
30 |
-
class LlavaConfig(LlamaConfig):
|
31 |
-
model_type = "llava"
|
32 |
-
|
33 |
-
|
34 |
-
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
35 |
-
config_class = LlavaConfig
|
36 |
-
|
37 |
-
def __init__(self, config: LlamaConfig):
|
38 |
-
super(LlavaLlamaModel, self).__init__(config)
|
39 |
-
|
40 |
-
|
41 |
-
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
42 |
-
config_class = LlavaConfig
|
43 |
-
|
44 |
-
def __init__(self, config):
|
45 |
-
super(LlamaForCausalLM, self).__init__(config)
|
46 |
-
self.model = LlavaLlamaModel(config)
|
47 |
-
|
48 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
49 |
-
|
50 |
-
# Initialize weights and apply final processing
|
51 |
-
self.post_init()
|
52 |
-
|
53 |
-
def get_model(self):
|
54 |
-
return self.model
|
55 |
-
|
56 |
-
def forward(
|
57 |
-
self,
|
58 |
-
input_ids: torch.LongTensor = None,
|
59 |
-
attention_mask: Optional[torch.Tensor] = None,
|
60 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
61 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
62 |
-
labels: Optional[torch.LongTensor] = None,
|
63 |
-
use_cache: Optional[bool] = None,
|
64 |
-
output_attentions: Optional[bool] = None,
|
65 |
-
output_hidden_states: Optional[bool] = None,
|
66 |
-
images: Optional[torch.FloatTensor] = None,
|
67 |
-
return_dict: Optional[bool] = None,
|
68 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
69 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
70 |
-
output_hidden_states = (
|
71 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
72 |
-
)
|
73 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
74 |
-
|
75 |
-
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
76 |
-
|
77 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
78 |
-
outputs = self.model(
|
79 |
-
input_ids=input_ids,
|
80 |
-
attention_mask=attention_mask,
|
81 |
-
past_key_values=past_key_values,
|
82 |
-
inputs_embeds=inputs_embeds,
|
83 |
-
use_cache=use_cache,
|
84 |
-
output_attentions=output_attentions,
|
85 |
-
output_hidden_states=output_hidden_states,
|
86 |
-
return_dict=return_dict
|
87 |
-
)
|
88 |
-
|
89 |
-
hidden_states = outputs[0]
|
90 |
-
logits = self.lm_head(hidden_states)
|
91 |
-
|
92 |
-
loss = None
|
93 |
-
if labels is not None:
|
94 |
-
# Shift so that tokens < n predict n
|
95 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
96 |
-
shift_labels = labels[..., 1:].contiguous()
|
97 |
-
# Flatten the tokens
|
98 |
-
loss_fct = CrossEntropyLoss()
|
99 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
100 |
-
shift_labels = shift_labels.view(-1)
|
101 |
-
# Enable model/pipeline parallelism
|
102 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
103 |
-
loss = loss_fct(shift_logits, shift_labels)
|
104 |
-
|
105 |
-
if not return_dict:
|
106 |
-
output = (logits,) + outputs[1:]
|
107 |
-
return (loss,) + output if loss is not None else output
|
108 |
-
|
109 |
-
return CausalLMOutputWithPast(
|
110 |
-
loss=loss,
|
111 |
-
logits=logits,
|
112 |
-
past_key_values=outputs.past_key_values,
|
113 |
-
hidden_states=outputs.hidden_states,
|
114 |
-
attentions=outputs.attentions,
|
115 |
-
)
|
116 |
-
|
117 |
-
def prepare_inputs_for_generation(
|
118 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
119 |
-
):
|
120 |
-
if past_key_values:
|
121 |
-
input_ids = input_ids[:, -1:]
|
122 |
-
|
123 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
124 |
-
if inputs_embeds is not None and past_key_values is None:
|
125 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
126 |
-
else:
|
127 |
-
model_inputs = {"input_ids": input_ids}
|
128 |
-
|
129 |
-
model_inputs.update(
|
130 |
-
{
|
131 |
-
"past_key_values": past_key_values,
|
132 |
-
"use_cache": kwargs.get("use_cache"),
|
133 |
-
"attention_mask": attention_mask,
|
134 |
-
"images": kwargs.get("images", None),
|
135 |
-
}
|
136 |
-
)
|
137 |
-
return model_inputs
|
138 |
-
|
139 |
-
AutoConfig.register("llava", LlavaConfig)
|
140 |
-
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM
|
24 |
+
|
25 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
26 |
+
|
27 |
+
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
28 |
+
|
29 |
+
|
30 |
+
class LlavaConfig(LlamaConfig):
|
31 |
+
model_type = "llava"
|
32 |
+
|
33 |
+
|
34 |
+
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
35 |
+
config_class = LlavaConfig
|
36 |
+
|
37 |
+
def __init__(self, config: LlamaConfig):
|
38 |
+
super(LlavaLlamaModel, self).__init__(config)
|
39 |
+
|
40 |
+
|
41 |
+
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
42 |
+
config_class = LlavaConfig
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super(LlamaForCausalLM, self).__init__(config)
|
46 |
+
self.model = LlavaLlamaModel(config)
|
47 |
+
|
48 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
49 |
+
|
50 |
+
# Initialize weights and apply final processing
|
51 |
+
self.post_init()
|
52 |
+
|
53 |
+
def get_model(self):
|
54 |
+
return self.model
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
input_ids: torch.LongTensor = None,
|
59 |
+
attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
61 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
62 |
+
labels: Optional[torch.LongTensor] = None,
|
63 |
+
use_cache: Optional[bool] = None,
|
64 |
+
output_attentions: Optional[bool] = None,
|
65 |
+
output_hidden_states: Optional[bool] = None,
|
66 |
+
images: Optional[torch.FloatTensor] = None,
|
67 |
+
return_dict: Optional[bool] = None,
|
68 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
69 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
70 |
+
output_hidden_states = (
|
71 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
72 |
+
)
|
73 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
74 |
+
|
75 |
+
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
76 |
+
|
77 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
78 |
+
outputs = self.model(
|
79 |
+
input_ids=input_ids,
|
80 |
+
attention_mask=attention_mask,
|
81 |
+
past_key_values=past_key_values,
|
82 |
+
inputs_embeds=inputs_embeds,
|
83 |
+
use_cache=use_cache,
|
84 |
+
output_attentions=output_attentions,
|
85 |
+
output_hidden_states=output_hidden_states,
|
86 |
+
return_dict=return_dict
|
87 |
+
)
|
88 |
+
|
89 |
+
hidden_states = outputs[0]
|
90 |
+
logits = self.lm_head(hidden_states)
|
91 |
+
|
92 |
+
loss = None
|
93 |
+
if labels is not None:
|
94 |
+
# Shift so that tokens < n predict n
|
95 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
96 |
+
shift_labels = labels[..., 1:].contiguous()
|
97 |
+
# Flatten the tokens
|
98 |
+
loss_fct = CrossEntropyLoss()
|
99 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
100 |
+
shift_labels = shift_labels.view(-1)
|
101 |
+
# Enable model/pipeline parallelism
|
102 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
103 |
+
loss = loss_fct(shift_logits, shift_labels)
|
104 |
+
|
105 |
+
if not return_dict:
|
106 |
+
output = (logits,) + outputs[1:]
|
107 |
+
return (loss,) + output if loss is not None else output
|
108 |
+
|
109 |
+
return CausalLMOutputWithPast(
|
110 |
+
loss=loss,
|
111 |
+
logits=logits,
|
112 |
+
past_key_values=outputs.past_key_values,
|
113 |
+
hidden_states=outputs.hidden_states,
|
114 |
+
attentions=outputs.attentions,
|
115 |
+
)
|
116 |
+
|
117 |
+
def prepare_inputs_for_generation(
|
118 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
119 |
+
):
|
120 |
+
if past_key_values:
|
121 |
+
input_ids = input_ids[:, -1:]
|
122 |
+
|
123 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
124 |
+
if inputs_embeds is not None and past_key_values is None:
|
125 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
126 |
+
else:
|
127 |
+
model_inputs = {"input_ids": input_ids}
|
128 |
+
|
129 |
+
model_inputs.update(
|
130 |
+
{
|
131 |
+
"past_key_values": past_key_values,
|
132 |
+
"use_cache": kwargs.get("use_cache"),
|
133 |
+
"attention_mask": attention_mask,
|
134 |
+
"images": kwargs.get("images", None),
|
135 |
+
}
|
136 |
+
)
|
137 |
+
return model_inputs
|
138 |
+
|
139 |
+
AutoConfig.register("llava", LlavaConfig, exist_ok=True)
|
140 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|