Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Upload 2 files
Browse files- SUPIR/__init__.py +0 -0
- SUPIR/util.py +179 -0
SUPIR/__init__.py
ADDED
File without changes
|
SUPIR/util.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
from torch.nn.functional import interpolate
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from sgm.util import instantiate_from_config
|
9 |
+
|
10 |
+
|
11 |
+
def get_state_dict(d):
|
12 |
+
return d.get('state_dict', d)
|
13 |
+
|
14 |
+
|
15 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
16 |
+
_, extension = os.path.splitext(ckpt_path)
|
17 |
+
if extension.lower() == ".safetensors":
|
18 |
+
import safetensors.torch
|
19 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
20 |
+
else:
|
21 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
22 |
+
state_dict = get_state_dict(state_dict)
|
23 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
24 |
+
return state_dict
|
25 |
+
|
26 |
+
|
27 |
+
def create_model(config_path):
|
28 |
+
config = OmegaConf.load(config_path)
|
29 |
+
model = instantiate_from_config(config.model).cpu()
|
30 |
+
print(f'Loaded model config from [{config_path}]')
|
31 |
+
return model
|
32 |
+
|
33 |
+
|
34 |
+
def create_SUPIR_model(config_path, SUPIR_sign=None, load_default_setting=False):
|
35 |
+
config = OmegaConf.load(config_path)
|
36 |
+
model = instantiate_from_config(config.model).cpu()
|
37 |
+
print(f'Loaded model config from [{config_path}]')
|
38 |
+
if config.SDXL_CKPT is not None:
|
39 |
+
model.load_state_dict(load_state_dict(config.SDXL_CKPT), strict=False)
|
40 |
+
if config.SUPIR_CKPT is not None:
|
41 |
+
model.load_state_dict(load_state_dict(config.SUPIR_CKPT), strict=False)
|
42 |
+
if SUPIR_sign is not None:
|
43 |
+
assert SUPIR_sign in ['F', 'Q']
|
44 |
+
if SUPIR_sign == 'F':
|
45 |
+
model.load_state_dict(load_state_dict(config.SUPIR_CKPT_F), strict=False)
|
46 |
+
elif SUPIR_sign == 'Q':
|
47 |
+
model.load_state_dict(load_state_dict(config.SUPIR_CKPT_Q), strict=False)
|
48 |
+
if load_default_setting:
|
49 |
+
default_setting = config.default_setting
|
50 |
+
return model, default_setting
|
51 |
+
return model
|
52 |
+
|
53 |
+
def load_QF_ckpt(config_path):
|
54 |
+
config = OmegaConf.load(config_path)
|
55 |
+
ckpt_F = torch.load(config.SUPIR_CKPT_F, map_location='cpu')
|
56 |
+
ckpt_Q = torch.load(config.SUPIR_CKPT_Q, map_location='cpu')
|
57 |
+
return ckpt_Q, ckpt_F
|
58 |
+
|
59 |
+
|
60 |
+
def PIL2Tensor(img, upsacle=1, min_size=1024, fix_resize=None):
|
61 |
+
'''
|
62 |
+
PIL.Image -> Tensor[C, H, W], RGB, [-1, 1]
|
63 |
+
'''
|
64 |
+
# size
|
65 |
+
w, h = img.size
|
66 |
+
w *= upsacle
|
67 |
+
h *= upsacle
|
68 |
+
w0, h0 = round(w), round(h)
|
69 |
+
if min(w, h) < min_size:
|
70 |
+
_upsacle = min_size / min(w, h)
|
71 |
+
w *= _upsacle
|
72 |
+
h *= _upsacle
|
73 |
+
if fix_resize is not None:
|
74 |
+
_upsacle = fix_resize / min(w, h)
|
75 |
+
w *= _upsacle
|
76 |
+
h *= _upsacle
|
77 |
+
w0, h0 = round(w), round(h)
|
78 |
+
w = int(np.round(w / 64.0)) * 64
|
79 |
+
h = int(np.round(h / 64.0)) * 64
|
80 |
+
x = img.resize((w, h), Image.BICUBIC)
|
81 |
+
x = np.array(x).round().clip(0, 255).astype(np.uint8)
|
82 |
+
x = x / 255 * 2 - 1
|
83 |
+
x = torch.tensor(x, dtype=torch.float32).permute(2, 0, 1)
|
84 |
+
return x, h0, w0
|
85 |
+
|
86 |
+
|
87 |
+
def Tensor2PIL(x, h0, w0):
|
88 |
+
'''
|
89 |
+
Tensor[C, H, W], RGB, [-1, 1] -> PIL.Image
|
90 |
+
'''
|
91 |
+
x = x.unsqueeze(0)
|
92 |
+
x = interpolate(x, size=(h0, w0), mode='bicubic')
|
93 |
+
x = (x.squeeze(0).permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
94 |
+
return Image.fromarray(x)
|
95 |
+
|
96 |
+
|
97 |
+
def HWC3(x):
|
98 |
+
assert x.dtype == np.uint8
|
99 |
+
if x.ndim == 2:
|
100 |
+
x = x[:, :, None]
|
101 |
+
assert x.ndim == 3
|
102 |
+
H, W, C = x.shape
|
103 |
+
assert C == 1 or C == 3 or C == 4
|
104 |
+
if C == 3:
|
105 |
+
return x
|
106 |
+
if C == 1:
|
107 |
+
return np.concatenate([x, x, x], axis=2)
|
108 |
+
if C == 4:
|
109 |
+
color = x[:, :, 0:3].astype(np.float32)
|
110 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
111 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
112 |
+
y = y.clip(0, 255).astype(np.uint8)
|
113 |
+
return y
|
114 |
+
|
115 |
+
|
116 |
+
def upscale_image(input_image, upscale, min_size=None, unit_resolution=64):
|
117 |
+
H, W, C = input_image.shape
|
118 |
+
H = float(H)
|
119 |
+
W = float(W)
|
120 |
+
H *= upscale
|
121 |
+
W *= upscale
|
122 |
+
if min_size is not None:
|
123 |
+
if min(H, W) < min_size:
|
124 |
+
_upsacle = min_size / min(W, H)
|
125 |
+
W *= _upsacle
|
126 |
+
H *= _upsacle
|
127 |
+
H = int(np.round(H / unit_resolution)) * unit_resolution
|
128 |
+
W = int(np.round(W / unit_resolution)) * unit_resolution
|
129 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if upscale > 1 else cv2.INTER_AREA)
|
130 |
+
img = img.round().clip(0, 255).astype(np.uint8)
|
131 |
+
return img
|
132 |
+
|
133 |
+
|
134 |
+
def fix_resize(input_image, size=512, unit_resolution=64):
|
135 |
+
H, W, C = input_image.shape
|
136 |
+
H = float(H)
|
137 |
+
W = float(W)
|
138 |
+
upscale = size / min(H, W)
|
139 |
+
H *= upscale
|
140 |
+
W *= upscale
|
141 |
+
H = int(np.round(H / unit_resolution)) * unit_resolution
|
142 |
+
W = int(np.round(W / unit_resolution)) * unit_resolution
|
143 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if upscale > 1 else cv2.INTER_AREA)
|
144 |
+
img = img.round().clip(0, 255).astype(np.uint8)
|
145 |
+
return img
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
def Numpy2Tensor(img):
|
150 |
+
'''
|
151 |
+
np.array[H, w, C] [0, 255] -> Tensor[C, H, W], RGB, [-1, 1]
|
152 |
+
'''
|
153 |
+
# size
|
154 |
+
img = np.array(img) / 255 * 2 - 1
|
155 |
+
img = torch.tensor(img, dtype=torch.float32).permute(2, 0, 1)
|
156 |
+
return img
|
157 |
+
|
158 |
+
|
159 |
+
def Tensor2Numpy(x, h0=None, w0=None):
|
160 |
+
'''
|
161 |
+
Tensor[C, H, W], RGB, [-1, 1] -> PIL.Image
|
162 |
+
'''
|
163 |
+
if h0 is not None and w0 is not None:
|
164 |
+
x = x.unsqueeze(0)
|
165 |
+
x = interpolate(x, size=(h0, w0), mode='bicubic')
|
166 |
+
x = x.squeeze(0)
|
167 |
+
x = (x.permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
def convert_dtype(dtype_str):
|
172 |
+
if dtype_str == 'fp32':
|
173 |
+
return torch.float32
|
174 |
+
elif dtype_str == 'fp16':
|
175 |
+
return torch.float16
|
176 |
+
elif dtype_str == 'bf16':
|
177 |
+
return torch.bfloat16
|
178 |
+
else:
|
179 |
+
raise NotImplementedError
|