Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Rotation radio buttons
Browse files- gradio_demo.py +20 -32
gradio_demo.py
CHANGED
@@ -70,19 +70,7 @@ if torch.cuda.device_count() > 0:
|
|
70 |
def check_upload(input_image):
|
71 |
if input_image is None:
|
72 |
raise gr.Error("Please provide an image to restore.")
|
73 |
-
return
|
74 |
-
|
75 |
-
def rotate_anti_90(image_array):
|
76 |
-
if image_array is None:
|
77 |
-
raise gr.Error("Please provide an image to rotate.")
|
78 |
-
|
79 |
-
return np.array(list(zip(*image_array))[::-1])
|
80 |
-
|
81 |
-
def rotate_90(image_array):
|
82 |
-
if image_array is None:
|
83 |
-
raise gr.Error("Please provide an image to rotate.")
|
84 |
-
|
85 |
-
return np.array(list(zip(*image_array[::-1])))
|
86 |
|
87 |
def update_seed(is_randomize_seed, seed):
|
88 |
if is_randomize_seed:
|
@@ -136,6 +124,7 @@ def llave_process(input_image, temperature, top_p, qs=None):
|
|
136 |
|
137 |
def stage2_process(
|
138 |
noisy_image,
|
|
|
139 |
denoise_image,
|
140 |
prompt,
|
141 |
a_prompt,
|
@@ -165,6 +154,7 @@ def stage2_process(
|
|
165 |
allocation
|
166 |
):
|
167 |
print("noisy_image: " + str(noisy_image))
|
|
|
168 |
print("denoise_image: " + str(denoise_image))
|
169 |
print("prompt: " + str(prompt))
|
170 |
print("a_prompt: " + str(a_prompt))
|
@@ -213,11 +203,22 @@ def stage2_process(
|
|
213 |
else:
|
214 |
a_prompt = prompt + a_prompt
|
215 |
print("Final prompt: " + str(a_prompt))
|
|
|
216 |
noisy_image = noisy_image if denoise_image is None else denoise_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
if 1 < downscale:
|
218 |
input_height, input_width, input_channel = noisy_image.shape
|
219 |
noisy_image = np.array(Image.fromarray(noisy_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
|
220 |
|
|
|
221 |
if allocation == 1:
|
222 |
return restore_in_1min(
|
223 |
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
@@ -513,11 +514,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
513 |
gr.HTML(title_html)
|
514 |
|
515 |
input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.gif, *.bmp)", show_label=True, type="numpy", height=600, elem_id="image-input")
|
516 |
-
|
517 |
-
with gr.Column():
|
518 |
-
rotate_anti_90_button = gr.Button(value="⤴ Rotate -90°", elem_id="rotate_anti_90_button", visible=False)
|
519 |
-
with gr.Column():
|
520 |
-
rotate_90_button = gr.Button(value="⤵ Rotate +90°", elem_id="rotate_90_button", visible=False)
|
521 |
with gr.Group():
|
522 |
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; I advise you to write in English because other languages may not be handled", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
|
523 |
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
@@ -610,6 +607,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
610 |
fn = stage2_process,
|
611 |
inputs = [
|
612 |
input_image,
|
|
|
613 |
denoise_image,
|
614 |
prompt,
|
615 |
a_prompt,
|
@@ -647,6 +645,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
647 |
examples = [
|
648 |
[
|
649 |
"./Examples/Example1.png",
|
|
|
650 |
None,
|
651 |
"Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
|
652 |
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
@@ -677,6 +676,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
677 |
],
|
678 |
[
|
679 |
"./Examples/Example2.jpeg",
|
|
|
680 |
None,
|
681 |
"The head of a tabby cat, in a house, photorealistic, 8k, extremely detailled",
|
682 |
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
@@ -715,20 +715,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
715 |
input_image.upload(fn = check_upload, inputs = [
|
716 |
input_image
|
717 |
], outputs = [
|
718 |
-
|
719 |
-
rotate_90_button
|
720 |
-
], queue = False, show_progress = False)
|
721 |
-
|
722 |
-
rotate_anti_90_button.click(fn = rotate_anti_90, inputs = [
|
723 |
-
input_image
|
724 |
-
], outputs = [
|
725 |
-
input_image
|
726 |
-
], queue = False, show_progress = False)
|
727 |
-
|
728 |
-
rotate_90_button.click(fn = rotate_90, inputs = [
|
729 |
-
input_image
|
730 |
-
], outputs = [
|
731 |
-
input_image
|
732 |
], queue = False, show_progress = False)
|
733 |
|
734 |
denoise_button.click(fn = check, inputs = [
|
@@ -761,6 +748,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
761 |
input_image
|
762 |
], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
|
763 |
input_image,
|
|
|
764 |
denoise_image,
|
765 |
prompt,
|
766 |
a_prompt,
|
|
|
70 |
def check_upload(input_image):
|
71 |
if input_image is None:
|
72 |
raise gr.Error("Please provide an image to restore.")
|
73 |
+
return gr.update(visible = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def update_seed(is_randomize_seed, seed):
|
76 |
if is_randomize_seed:
|
|
|
124 |
|
125 |
def stage2_process(
|
126 |
noisy_image,
|
127 |
+
rotation,
|
128 |
denoise_image,
|
129 |
prompt,
|
130 |
a_prompt,
|
|
|
154 |
allocation
|
155 |
):
|
156 |
print("noisy_image: " + str(noisy_image))
|
157 |
+
print("rotation: " + str(rotation))
|
158 |
print("denoise_image: " + str(denoise_image))
|
159 |
print("prompt: " + str(prompt))
|
160 |
print("a_prompt: " + str(a_prompt))
|
|
|
203 |
else:
|
204 |
a_prompt = prompt + a_prompt
|
205 |
print("Final prompt: " + str(a_prompt))
|
206 |
+
|
207 |
noisy_image = noisy_image if denoise_image is None else denoise_image
|
208 |
+
|
209 |
+
if rotation == 90:
|
210 |
+
noisy_image = np.array(list(zip(*noisy_image[::-1])))
|
211 |
+
elif rotation == 180:
|
212 |
+
noisy_image = np.array(list(zip(*noisy_image[::-1])))
|
213 |
+
noisy_image = np.array(list(zip(*noisy_image[::-1])))
|
214 |
+
elif rotation == -90:
|
215 |
+
noisy_image = np.array(list(zip(*noisy_image))[::-1])
|
216 |
+
|
217 |
if 1 < downscale:
|
218 |
input_height, input_width, input_channel = noisy_image.shape
|
219 |
noisy_image = np.array(Image.fromarray(noisy_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
|
220 |
|
221 |
+
# Allocation
|
222 |
if allocation == 1:
|
223 |
return restore_in_1min(
|
224 |
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
|
|
514 |
gr.HTML(title_html)
|
515 |
|
516 |
input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.gif, *.bmp)", show_label=True, type="numpy", height=600, elem_id="image-input")
|
517 |
+
rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
|
|
|
|
|
|
|
|
|
518 |
with gr.Group():
|
519 |
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; I advise you to write in English because other languages may not be handled", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
|
520 |
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
|
|
607 |
fn = stage2_process,
|
608 |
inputs = [
|
609 |
input_image,
|
610 |
+
rotation,
|
611 |
denoise_image,
|
612 |
prompt,
|
613 |
a_prompt,
|
|
|
645 |
examples = [
|
646 |
[
|
647 |
"./Examples/Example1.png",
|
648 |
+
0,
|
649 |
None,
|
650 |
"Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
|
651 |
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
|
|
676 |
],
|
677 |
[
|
678 |
"./Examples/Example2.jpeg",
|
679 |
+
0,
|
680 |
None,
|
681 |
"The head of a tabby cat, in a house, photorealistic, 8k, extremely detailled",
|
682 |
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
|
|
715 |
input_image.upload(fn = check_upload, inputs = [
|
716 |
input_image
|
717 |
], outputs = [
|
718 |
+
rotation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
], queue = False, show_progress = False)
|
720 |
|
721 |
denoise_button.click(fn = check, inputs = [
|
|
|
748 |
input_image
|
749 |
], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
|
750 |
input_image,
|
751 |
+
rotation,
|
752 |
denoise_image,
|
753 |
prompt,
|
754 |
a_prompt,
|