Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Upload 3 files
Browse files- sgm/modules/__init__.py +8 -0
- sgm/modules/attention.py +635 -0
- sgm/modules/ema.py +86 -0
sgm/modules/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .encoders.modules import GeneralConditioner
|
2 |
+
from .encoders.modules import GeneralConditionerWithControl
|
3 |
+
from .encoders.modules import PreparedConditioner
|
4 |
+
|
5 |
+
UNCONDITIONAL_CONFIG = {
|
6 |
+
"target": "sgm.modules.GeneralConditioner",
|
7 |
+
"params": {"emb_models": []},
|
8 |
+
}
|
sgm/modules/attention.py
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from inspect import isfunction
|
3 |
+
from typing import Any, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
# from einops._torch_specific import allow_ops_in_compiled_graph
|
8 |
+
# allow_ops_in_compiled_graph()
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
from packaging import version
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
14 |
+
SDP_IS_AVAILABLE = True
|
15 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
16 |
+
|
17 |
+
BACKEND_MAP = {
|
18 |
+
SDPBackend.MATH: {
|
19 |
+
"enable_math": True,
|
20 |
+
"enable_flash": False,
|
21 |
+
"enable_mem_efficient": False,
|
22 |
+
},
|
23 |
+
SDPBackend.FLASH_ATTENTION: {
|
24 |
+
"enable_math": False,
|
25 |
+
"enable_flash": True,
|
26 |
+
"enable_mem_efficient": False,
|
27 |
+
},
|
28 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
29 |
+
"enable_math": False,
|
30 |
+
"enable_flash": False,
|
31 |
+
"enable_mem_efficient": True,
|
32 |
+
},
|
33 |
+
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
|
34 |
+
}
|
35 |
+
else:
|
36 |
+
from contextlib import nullcontext
|
37 |
+
|
38 |
+
SDP_IS_AVAILABLE = False
|
39 |
+
sdp_kernel = nullcontext
|
40 |
+
BACKEND_MAP = {}
|
41 |
+
print(
|
42 |
+
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
|
43 |
+
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
|
44 |
+
)
|
45 |
+
|
46 |
+
try:
|
47 |
+
import xformers
|
48 |
+
import xformers.ops
|
49 |
+
|
50 |
+
XFORMERS_IS_AVAILABLE = True
|
51 |
+
except:
|
52 |
+
XFORMERS_IS_AVAILABLE = False
|
53 |
+
print("no module 'xformers'. Processing without...")
|
54 |
+
|
55 |
+
from .diffusionmodules.util import checkpoint
|
56 |
+
|
57 |
+
|
58 |
+
def exists(val):
|
59 |
+
return val is not None
|
60 |
+
|
61 |
+
|
62 |
+
def uniq(arr):
|
63 |
+
return {el: True for el in arr}.keys()
|
64 |
+
|
65 |
+
|
66 |
+
def default(val, d):
|
67 |
+
if exists(val):
|
68 |
+
return val
|
69 |
+
return d() if isfunction(d) else d
|
70 |
+
|
71 |
+
|
72 |
+
def max_neg_value(t):
|
73 |
+
return -torch.finfo(t.dtype).max
|
74 |
+
|
75 |
+
|
76 |
+
def init_(tensor):
|
77 |
+
dim = tensor.shape[-1]
|
78 |
+
std = 1 / math.sqrt(dim)
|
79 |
+
tensor.uniform_(-std, std)
|
80 |
+
return tensor
|
81 |
+
|
82 |
+
|
83 |
+
# feedforward
|
84 |
+
class GEGLU(nn.Module):
|
85 |
+
def __init__(self, dim_in, dim_out):
|
86 |
+
super().__init__()
|
87 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
91 |
+
return x * F.gelu(gate)
|
92 |
+
|
93 |
+
|
94 |
+
class FeedForward(nn.Module):
|
95 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
96 |
+
super().__init__()
|
97 |
+
inner_dim = int(dim * mult)
|
98 |
+
dim_out = default(dim_out, dim)
|
99 |
+
project_in = (
|
100 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
101 |
+
if not glu
|
102 |
+
else GEGLU(dim, inner_dim)
|
103 |
+
)
|
104 |
+
|
105 |
+
self.net = nn.Sequential(
|
106 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
107 |
+
)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
return self.net(x)
|
111 |
+
|
112 |
+
|
113 |
+
def zero_module(module):
|
114 |
+
"""
|
115 |
+
Zero out the parameters of a module and return it.
|
116 |
+
"""
|
117 |
+
for p in module.parameters():
|
118 |
+
p.detach().zero_()
|
119 |
+
return module
|
120 |
+
|
121 |
+
|
122 |
+
def Normalize(in_channels):
|
123 |
+
return torch.nn.GroupNorm(
|
124 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
class LinearAttention(nn.Module):
|
129 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
130 |
+
super().__init__()
|
131 |
+
self.heads = heads
|
132 |
+
hidden_dim = dim_head * heads
|
133 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
134 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
b, c, h, w = x.shape
|
138 |
+
qkv = self.to_qkv(x)
|
139 |
+
q, k, v = rearrange(
|
140 |
+
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
141 |
+
)
|
142 |
+
k = k.softmax(dim=-1)
|
143 |
+
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
144 |
+
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
145 |
+
out = rearrange(
|
146 |
+
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
147 |
+
)
|
148 |
+
return self.to_out(out)
|
149 |
+
|
150 |
+
|
151 |
+
class SpatialSelfAttention(nn.Module):
|
152 |
+
def __init__(self, in_channels):
|
153 |
+
super().__init__()
|
154 |
+
self.in_channels = in_channels
|
155 |
+
|
156 |
+
self.norm = Normalize(in_channels)
|
157 |
+
self.q = torch.nn.Conv2d(
|
158 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
159 |
+
)
|
160 |
+
self.k = torch.nn.Conv2d(
|
161 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
162 |
+
)
|
163 |
+
self.v = torch.nn.Conv2d(
|
164 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
165 |
+
)
|
166 |
+
self.proj_out = torch.nn.Conv2d(
|
167 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, x):
|
171 |
+
h_ = x
|
172 |
+
h_ = self.norm(h_)
|
173 |
+
q = self.q(h_)
|
174 |
+
k = self.k(h_)
|
175 |
+
v = self.v(h_)
|
176 |
+
|
177 |
+
# compute attention
|
178 |
+
b, c, h, w = q.shape
|
179 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
180 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
181 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
182 |
+
|
183 |
+
w_ = w_ * (int(c) ** (-0.5))
|
184 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
185 |
+
|
186 |
+
# attend to values
|
187 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
188 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
189 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
190 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
191 |
+
h_ = self.proj_out(h_)
|
192 |
+
|
193 |
+
return x + h_
|
194 |
+
|
195 |
+
|
196 |
+
class CrossAttention(nn.Module):
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
query_dim,
|
200 |
+
context_dim=None,
|
201 |
+
heads=8,
|
202 |
+
dim_head=64,
|
203 |
+
dropout=0.0,
|
204 |
+
backend=None,
|
205 |
+
):
|
206 |
+
super().__init__()
|
207 |
+
inner_dim = dim_head * heads
|
208 |
+
context_dim = default(context_dim, query_dim)
|
209 |
+
|
210 |
+
self.scale = dim_head**-0.5
|
211 |
+
self.heads = heads
|
212 |
+
|
213 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
214 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
215 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
216 |
+
|
217 |
+
self.to_out = nn.Sequential(
|
218 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
219 |
+
)
|
220 |
+
self.backend = backend
|
221 |
+
|
222 |
+
def forward(
|
223 |
+
self,
|
224 |
+
x,
|
225 |
+
context=None,
|
226 |
+
mask=None,
|
227 |
+
additional_tokens=None,
|
228 |
+
n_times_crossframe_attn_in_self=0,
|
229 |
+
):
|
230 |
+
h = self.heads
|
231 |
+
|
232 |
+
if additional_tokens is not None:
|
233 |
+
# get the number of masked tokens at the beginning of the output sequence
|
234 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
235 |
+
# add additional token
|
236 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
237 |
+
|
238 |
+
q = self.to_q(x)
|
239 |
+
context = default(context, x)
|
240 |
+
k = self.to_k(context)
|
241 |
+
v = self.to_v(context)
|
242 |
+
|
243 |
+
if n_times_crossframe_attn_in_self:
|
244 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
245 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
246 |
+
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
|
247 |
+
k = repeat(
|
248 |
+
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
249 |
+
)
|
250 |
+
v = repeat(
|
251 |
+
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
252 |
+
)
|
253 |
+
|
254 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
255 |
+
|
256 |
+
## old
|
257 |
+
"""
|
258 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
259 |
+
del q, k
|
260 |
+
|
261 |
+
if exists(mask):
|
262 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
263 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
264 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
265 |
+
sim.masked_fill_(~mask, max_neg_value)
|
266 |
+
|
267 |
+
# attention, what we cannot get enough of
|
268 |
+
sim = sim.softmax(dim=-1)
|
269 |
+
|
270 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
271 |
+
"""
|
272 |
+
## new
|
273 |
+
with sdp_kernel(**BACKEND_MAP[self.backend]):
|
274 |
+
# print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
|
275 |
+
out = F.scaled_dot_product_attention(
|
276 |
+
q, k, v, attn_mask=mask
|
277 |
+
) # scale is dim_head ** -0.5 per default
|
278 |
+
|
279 |
+
del q, k, v
|
280 |
+
out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
281 |
+
|
282 |
+
if additional_tokens is not None:
|
283 |
+
# remove additional token
|
284 |
+
out = out[:, n_tokens_to_mask:]
|
285 |
+
return self.to_out(out)
|
286 |
+
|
287 |
+
|
288 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
289 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
290 |
+
def __init__(
|
291 |
+
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
|
292 |
+
):
|
293 |
+
super().__init__()
|
294 |
+
print(
|
295 |
+
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
296 |
+
f"{heads} heads with a dimension of {dim_head}."
|
297 |
+
)
|
298 |
+
inner_dim = dim_head * heads
|
299 |
+
context_dim = default(context_dim, query_dim)
|
300 |
+
|
301 |
+
self.heads = heads
|
302 |
+
self.dim_head = dim_head
|
303 |
+
|
304 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
305 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
306 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
307 |
+
|
308 |
+
self.to_out = nn.Sequential(
|
309 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
310 |
+
)
|
311 |
+
self.attention_op: Optional[Any] = None
|
312 |
+
|
313 |
+
def forward(
|
314 |
+
self,
|
315 |
+
x,
|
316 |
+
context=None,
|
317 |
+
mask=None,
|
318 |
+
additional_tokens=None,
|
319 |
+
n_times_crossframe_attn_in_self=0,
|
320 |
+
):
|
321 |
+
if additional_tokens is not None:
|
322 |
+
# get the number of masked tokens at the beginning of the output sequence
|
323 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
324 |
+
# add additional token
|
325 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
326 |
+
q = self.to_q(x)
|
327 |
+
context = default(context, x)
|
328 |
+
k = self.to_k(context)
|
329 |
+
v = self.to_v(context)
|
330 |
+
|
331 |
+
if n_times_crossframe_attn_in_self:
|
332 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
333 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
334 |
+
# n_cp = x.shape[0]//n_times_crossframe_attn_in_self
|
335 |
+
k = repeat(
|
336 |
+
k[::n_times_crossframe_attn_in_self],
|
337 |
+
"b ... -> (b n) ...",
|
338 |
+
n=n_times_crossframe_attn_in_self,
|
339 |
+
)
|
340 |
+
v = repeat(
|
341 |
+
v[::n_times_crossframe_attn_in_self],
|
342 |
+
"b ... -> (b n) ...",
|
343 |
+
n=n_times_crossframe_attn_in_self,
|
344 |
+
)
|
345 |
+
|
346 |
+
b, _, _ = q.shape
|
347 |
+
q, k, v = map(
|
348 |
+
lambda t: t.unsqueeze(3)
|
349 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
350 |
+
.permute(0, 2, 1, 3)
|
351 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
352 |
+
.contiguous(),
|
353 |
+
(q, k, v),
|
354 |
+
)
|
355 |
+
|
356 |
+
# actually compute the attention, what we cannot get enough of
|
357 |
+
out = xformers.ops.memory_efficient_attention(
|
358 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
359 |
+
)
|
360 |
+
|
361 |
+
# TODO: Use this directly in the attention operation, as a bias
|
362 |
+
if exists(mask):
|
363 |
+
raise NotImplementedError
|
364 |
+
out = (
|
365 |
+
out.unsqueeze(0)
|
366 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
367 |
+
.permute(0, 2, 1, 3)
|
368 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
369 |
+
)
|
370 |
+
if additional_tokens is not None:
|
371 |
+
# remove additional token
|
372 |
+
out = out[:, n_tokens_to_mask:]
|
373 |
+
return self.to_out(out)
|
374 |
+
|
375 |
+
|
376 |
+
class BasicTransformerBlock(nn.Module):
|
377 |
+
ATTENTION_MODES = {
|
378 |
+
"softmax": CrossAttention, # vanilla attention
|
379 |
+
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
|
380 |
+
}
|
381 |
+
|
382 |
+
def __init__(
|
383 |
+
self,
|
384 |
+
dim,
|
385 |
+
n_heads,
|
386 |
+
d_head,
|
387 |
+
dropout=0.0,
|
388 |
+
context_dim=None,
|
389 |
+
gated_ff=True,
|
390 |
+
checkpoint=True,
|
391 |
+
disable_self_attn=False,
|
392 |
+
attn_mode="softmax",
|
393 |
+
sdp_backend=None,
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
assert attn_mode in self.ATTENTION_MODES
|
397 |
+
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
|
398 |
+
print(
|
399 |
+
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
|
400 |
+
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
401 |
+
)
|
402 |
+
attn_mode = "softmax"
|
403 |
+
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
|
404 |
+
print(
|
405 |
+
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
|
406 |
+
)
|
407 |
+
if not XFORMERS_IS_AVAILABLE:
|
408 |
+
assert (
|
409 |
+
False
|
410 |
+
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
411 |
+
else:
|
412 |
+
print("Falling back to xformers efficient attention.")
|
413 |
+
attn_mode = "softmax-xformers"
|
414 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
415 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
416 |
+
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
|
417 |
+
else:
|
418 |
+
assert sdp_backend is None
|
419 |
+
self.disable_self_attn = disable_self_attn
|
420 |
+
self.attn1 = attn_cls(
|
421 |
+
query_dim=dim,
|
422 |
+
heads=n_heads,
|
423 |
+
dim_head=d_head,
|
424 |
+
dropout=dropout,
|
425 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
426 |
+
backend=sdp_backend,
|
427 |
+
) # is a self-attention if not self.disable_self_attn
|
428 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
429 |
+
self.attn2 = attn_cls(
|
430 |
+
query_dim=dim,
|
431 |
+
context_dim=context_dim,
|
432 |
+
heads=n_heads,
|
433 |
+
dim_head=d_head,
|
434 |
+
dropout=dropout,
|
435 |
+
backend=sdp_backend,
|
436 |
+
) # is self-attn if context is none
|
437 |
+
self.norm1 = nn.LayerNorm(dim)
|
438 |
+
self.norm2 = nn.LayerNorm(dim)
|
439 |
+
self.norm3 = nn.LayerNorm(dim)
|
440 |
+
self.checkpoint = checkpoint
|
441 |
+
if self.checkpoint:
|
442 |
+
print(f"{self.__class__.__name__} is using checkpointing")
|
443 |
+
|
444 |
+
def forward(
|
445 |
+
self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
446 |
+
):
|
447 |
+
kwargs = {"x": x}
|
448 |
+
|
449 |
+
if context is not None:
|
450 |
+
kwargs.update({"context": context})
|
451 |
+
|
452 |
+
if additional_tokens is not None:
|
453 |
+
kwargs.update({"additional_tokens": additional_tokens})
|
454 |
+
|
455 |
+
if n_times_crossframe_attn_in_self:
|
456 |
+
kwargs.update(
|
457 |
+
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
|
458 |
+
)
|
459 |
+
|
460 |
+
# return mixed_checkpoint(self._forward, kwargs, self.parameters(), self.checkpoint)
|
461 |
+
return checkpoint(
|
462 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
463 |
+
)
|
464 |
+
|
465 |
+
def _forward(
|
466 |
+
self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
467 |
+
):
|
468 |
+
x = (
|
469 |
+
self.attn1(
|
470 |
+
self.norm1(x),
|
471 |
+
context=context if self.disable_self_attn else None,
|
472 |
+
additional_tokens=additional_tokens,
|
473 |
+
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
|
474 |
+
if not self.disable_self_attn
|
475 |
+
else 0,
|
476 |
+
)
|
477 |
+
+ x
|
478 |
+
)
|
479 |
+
x = (
|
480 |
+
self.attn2(
|
481 |
+
self.norm2(x), context=context, additional_tokens=additional_tokens
|
482 |
+
)
|
483 |
+
+ x
|
484 |
+
)
|
485 |
+
x = self.ff(self.norm3(x)) + x
|
486 |
+
return x
|
487 |
+
|
488 |
+
|
489 |
+
class BasicTransformerSingleLayerBlock(nn.Module):
|
490 |
+
ATTENTION_MODES = {
|
491 |
+
"softmax": CrossAttention, # vanilla attention
|
492 |
+
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
|
493 |
+
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
|
494 |
+
}
|
495 |
+
|
496 |
+
def __init__(
|
497 |
+
self,
|
498 |
+
dim,
|
499 |
+
n_heads,
|
500 |
+
d_head,
|
501 |
+
dropout=0.0,
|
502 |
+
context_dim=None,
|
503 |
+
gated_ff=True,
|
504 |
+
checkpoint=True,
|
505 |
+
attn_mode="softmax",
|
506 |
+
):
|
507 |
+
super().__init__()
|
508 |
+
assert attn_mode in self.ATTENTION_MODES
|
509 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
510 |
+
self.attn1 = attn_cls(
|
511 |
+
query_dim=dim,
|
512 |
+
heads=n_heads,
|
513 |
+
dim_head=d_head,
|
514 |
+
dropout=dropout,
|
515 |
+
context_dim=context_dim,
|
516 |
+
)
|
517 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
518 |
+
self.norm1 = nn.LayerNorm(dim)
|
519 |
+
self.norm2 = nn.LayerNorm(dim)
|
520 |
+
self.checkpoint = checkpoint
|
521 |
+
|
522 |
+
def forward(self, x, context=None):
|
523 |
+
return checkpoint(
|
524 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
525 |
+
)
|
526 |
+
|
527 |
+
def _forward(self, x, context=None):
|
528 |
+
x = self.attn1(self.norm1(x), context=context) + x
|
529 |
+
x = self.ff(self.norm2(x)) + x
|
530 |
+
return x
|
531 |
+
|
532 |
+
|
533 |
+
class SpatialTransformer(nn.Module):
|
534 |
+
"""
|
535 |
+
Transformer block for image-like data.
|
536 |
+
First, project the input (aka embedding)
|
537 |
+
and reshape to b, t, d.
|
538 |
+
Then apply standard transformer action.
|
539 |
+
Finally, reshape to image
|
540 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(
|
544 |
+
self,
|
545 |
+
in_channels,
|
546 |
+
n_heads,
|
547 |
+
d_head,
|
548 |
+
depth=1,
|
549 |
+
dropout=0.0,
|
550 |
+
context_dim=None,
|
551 |
+
disable_self_attn=False,
|
552 |
+
use_linear=False,
|
553 |
+
attn_type="softmax",
|
554 |
+
use_checkpoint=True,
|
555 |
+
# sdp_backend=SDPBackend.FLASH_ATTENTION
|
556 |
+
sdp_backend=None,
|
557 |
+
):
|
558 |
+
super().__init__()
|
559 |
+
print(
|
560 |
+
f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
|
561 |
+
)
|
562 |
+
from omegaconf import ListConfig
|
563 |
+
|
564 |
+
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
|
565 |
+
context_dim = [context_dim]
|
566 |
+
if exists(context_dim) and isinstance(context_dim, list):
|
567 |
+
if depth != len(context_dim):
|
568 |
+
print(
|
569 |
+
f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
|
570 |
+
f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
|
571 |
+
)
|
572 |
+
# depth does not match context dims.
|
573 |
+
assert all(
|
574 |
+
map(lambda x: x == context_dim[0], context_dim)
|
575 |
+
), "need homogenous context_dim to match depth automatically"
|
576 |
+
context_dim = depth * [context_dim[0]]
|
577 |
+
elif context_dim is None:
|
578 |
+
context_dim = [None] * depth
|
579 |
+
self.in_channels = in_channels
|
580 |
+
inner_dim = n_heads * d_head
|
581 |
+
self.norm = Normalize(in_channels)
|
582 |
+
if not use_linear:
|
583 |
+
self.proj_in = nn.Conv2d(
|
584 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
588 |
+
|
589 |
+
self.transformer_blocks = nn.ModuleList(
|
590 |
+
[
|
591 |
+
BasicTransformerBlock(
|
592 |
+
inner_dim,
|
593 |
+
n_heads,
|
594 |
+
d_head,
|
595 |
+
dropout=dropout,
|
596 |
+
context_dim=context_dim[d],
|
597 |
+
disable_self_attn=disable_self_attn,
|
598 |
+
attn_mode=attn_type,
|
599 |
+
checkpoint=use_checkpoint,
|
600 |
+
sdp_backend=sdp_backend,
|
601 |
+
)
|
602 |
+
for d in range(depth)
|
603 |
+
]
|
604 |
+
)
|
605 |
+
if not use_linear:
|
606 |
+
self.proj_out = zero_module(
|
607 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
611 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
612 |
+
self.use_linear = use_linear
|
613 |
+
|
614 |
+
def forward(self, x, context=None):
|
615 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
616 |
+
if not isinstance(context, list):
|
617 |
+
context = [context]
|
618 |
+
b, c, h, w = x.shape
|
619 |
+
x_in = x
|
620 |
+
x = self.norm(x)
|
621 |
+
if not self.use_linear:
|
622 |
+
x = self.proj_in(x)
|
623 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
624 |
+
if self.use_linear:
|
625 |
+
x = self.proj_in(x)
|
626 |
+
for i, block in enumerate(self.transformer_blocks):
|
627 |
+
if i > 0 and len(context) == 1:
|
628 |
+
i = 0 # use same context for each block
|
629 |
+
x = block(x, context=context[i])
|
630 |
+
if self.use_linear:
|
631 |
+
x = self.proj_out(x)
|
632 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
633 |
+
if not self.use_linear:
|
634 |
+
x = self.proj_out(x)
|
635 |
+
return x + x_in
|
sgm/modules/ema.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError("Decay must be between 0 and 1")
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer(
|
14 |
+
"num_updates",
|
15 |
+
torch.tensor(0, dtype=torch.int)
|
16 |
+
if use_num_upates
|
17 |
+
else torch.tensor(-1, dtype=torch.int),
|
18 |
+
)
|
19 |
+
|
20 |
+
for name, p in model.named_parameters():
|
21 |
+
if p.requires_grad:
|
22 |
+
# remove as '.'-character is not allowed in buffers
|
23 |
+
s_name = name.replace(".", "")
|
24 |
+
self.m_name2s_name.update({name: s_name})
|
25 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
26 |
+
|
27 |
+
self.collected_params = []
|
28 |
+
|
29 |
+
def reset_num_updates(self):
|
30 |
+
del self.num_updates
|
31 |
+
self.register_buffer("num_updates", torch.tensor(0, dtype=torch.int))
|
32 |
+
|
33 |
+
def forward(self, model):
|
34 |
+
decay = self.decay
|
35 |
+
|
36 |
+
if self.num_updates >= 0:
|
37 |
+
self.num_updates += 1
|
38 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
39 |
+
|
40 |
+
one_minus_decay = 1.0 - decay
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
m_param = dict(model.named_parameters())
|
44 |
+
shadow_params = dict(self.named_buffers())
|
45 |
+
|
46 |
+
for key in m_param:
|
47 |
+
if m_param[key].requires_grad:
|
48 |
+
sname = self.m_name2s_name[key]
|
49 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
50 |
+
shadow_params[sname].sub_(
|
51 |
+
one_minus_decay * (shadow_params[sname] - m_param[key])
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
assert not key in self.m_name2s_name
|
55 |
+
|
56 |
+
def copy_to(self, model):
|
57 |
+
m_param = dict(model.named_parameters())
|
58 |
+
shadow_params = dict(self.named_buffers())
|
59 |
+
for key in m_param:
|
60 |
+
if m_param[key].requires_grad:
|
61 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
62 |
+
else:
|
63 |
+
assert not key in self.m_name2s_name
|
64 |
+
|
65 |
+
def store(self, parameters):
|
66 |
+
"""
|
67 |
+
Save the current parameters for restoring later.
|
68 |
+
Args:
|
69 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
70 |
+
temporarily stored.
|
71 |
+
"""
|
72 |
+
self.collected_params = [param.clone() for param in parameters]
|
73 |
+
|
74 |
+
def restore(self, parameters):
|
75 |
+
"""
|
76 |
+
Restore the parameters stored with the `store` method.
|
77 |
+
Useful to validate the model with EMA parameters without affecting the
|
78 |
+
original optimization process. Store the parameters before the
|
79 |
+
`copy_to` method. After validation (or model saving), use this to
|
80 |
+
restore the former parameters.
|
81 |
+
Args:
|
82 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
83 |
+
updated with the stored parameters.
|
84 |
+
"""
|
85 |
+
for c_param, param in zip(self.collected_params, parameters):
|
86 |
+
param.data.copy_(c_param.data)
|