Spaces:
Sleeping
Sleeping
Maslov-Artem
commited on
Commit
·
afed7b5
1
Parent(s):
fe311a6
minor changes
Browse files- .gitignore +4 -1
- app.py +6 -3
- preprocessing.py +2 -3
.gitignore
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
.venv
|
2 |
healthcare_facilities_reviews.jsonl
|
3 |
-
|
|
|
|
|
|
|
|
1 |
.venv
|
2 |
healthcare_facilities_reviews.jsonl
|
3 |
+
*.ipynb
|
4 |
+
__pycache__/
|
5 |
+
*.csv
|
6 |
+
.ipynb_checkoints/
|
app.py
CHANGED
@@ -38,7 +38,10 @@ def predict_sentiment(text):
|
|
38 |
st.title("Sentiment Analysis with Logistic Regression")
|
39 |
text_input = st.text_input("Enter your review:")
|
40 |
if st.button("Predict"):
|
41 |
-
st.write("Knopka")
|
42 |
prediction = predict_sentiment(text_input)
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
38 |
st.title("Sentiment Analysis with Logistic Regression")
|
39 |
text_input = st.text_input("Enter your review:")
|
40 |
if st.button("Predict"):
|
|
|
41 |
prediction = predict_sentiment(text_input)
|
42 |
+
if prediction == 1:
|
43 |
+
st.write("prediction")
|
44 |
+
st.write("Отзыв положительный")
|
45 |
+
elif prediction == 0:
|
46 |
+
st.write("prediction")
|
47 |
+
st.write("Отзыв отрицательный")
|
preprocessing.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import re
|
2 |
import string
|
3 |
|
|
|
4 |
import pymorphy2
|
5 |
-
from nltk.corpus import stopwords
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
|
8 |
-
|
9 |
|
10 |
|
11 |
def clean_text(text: str) -> str:
|
@@ -20,7 +20,6 @@ def clean_text(text: str) -> str:
|
|
20 |
def lemmize_and_tokenize_text(text: str) -> list[str]:
|
21 |
morph = pymorphy2.MorphAnalyzer()
|
22 |
tokens = word_tokenize(text)
|
23 |
-
tokens = [token for token in tokens if token not in stop_words]
|
24 |
lemmas = [morph.parse(token)[0].normal_form for token in tokens]
|
25 |
return lemmas
|
26 |
|
|
|
1 |
import re
|
2 |
import string
|
3 |
|
4 |
+
import nltk
|
5 |
import pymorphy2
|
|
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
|
8 |
+
nltk.download("punkt")
|
9 |
|
10 |
|
11 |
def clean_text(text: str) -> str:
|
|
|
20 |
def lemmize_and_tokenize_text(text: str) -> list[str]:
|
21 |
morph = pymorphy2.MorphAnalyzer()
|
22 |
tokens = word_tokenize(text)
|
|
|
23 |
lemmas = [morph.parse(token)[0].normal_form for token in tokens]
|
24 |
return lemmas
|
25 |
|