Matharrr commited on
Commit
2d2acad
·
1 Parent(s): f612327

first commit

Browse files
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import os
3
+ from huggingface_hub import hf_hub_download
4
+ from torchvision import transforms
5
+ from PIL import Image
6
+ import gradio as gr
7
+
8
+ # Paksa penggunaan CPU
9
+ torch.cuda.is_available = lambda: False
10
+
11
+ # Import Pix2Pix dependencies
12
+ from models import create_model
13
+ from options.test_options import TestOptions
14
+
15
+ # Fungsi untuk mengunduh model dari Hugging Face
16
+ def download_model():
17
+ print("Mengunduh model Pix2Pix dari Hugging Face Hub...")
18
+ repo_id = "Matharrr/pix2pix-coloring-manga" # Sesuaikan dengan repo Anda
19
+ model_filename = "latest_net_G.pth"
20
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
21
+ print(f"Model berhasil diunduh ke: {model_path}")
22
+ return model_path
23
+
24
+ # Kelas Pix2PixModelLoader
25
+ class Pix2PixModelLoader:
26
+ def __init__(self):
27
+ # Path model yang diunduh
28
+ model_path = download_model()
29
+ self.device = torch.device("cpu") # Paksa ke CPU
30
+
31
+ # Konfigurasi opsi
32
+ opt = TestOptions().parse()
33
+ opt.model = "pix2pix"
34
+ opt.name = "pix2pix_model"
35
+ opt.isTrain = False
36
+ opt.gpu_ids = [] # Kosongkan GPU IDs
37
+
38
+ # Load model Pix2Pix
39
+ print("Memuat model Pix2Pix...")
40
+ self.model = create_model(opt)
41
+ self.model.setup(opt)
42
+ self.model.eval()
43
+
44
+ # Load state_dict secara langsung ke generator
45
+ print(f"Memuat file model langsung dari: {model_path}")
46
+ state_dict = torch.load(model_path, map_location=self.device)
47
+ self.model.netG.load_state_dict(state_dict)
48
+ self.model.eval()
49
+
50
+ # Transformasi input - tanpa resize
51
+ self.transform = transforms.Compose([
52
+ transforms.ToTensor(),
53
+ transforms.Normalize((0.5,), (0.5,))
54
+ ])
55
+
56
+ def predict(self, image):
57
+ # Simpan ukuran asli
58
+ original_size = image.size
59
+
60
+ # Preprocess
61
+ image_tensor = self.transform(image).unsqueeze(0).to(self.device)
62
+
63
+ # Inference
64
+ with torch.no_grad():
65
+ output = self.model.netG(image_tensor)
66
+
67
+ # Postprocess - Resize output ke ukuran asli
68
+ output_image = (output.squeeze().cpu().clamp(-1, 1) + 1) / 2.0
69
+ output_image = transforms.ToPILImage()(output_image).resize(original_size)
70
+ return output_image
71
+
72
+ # Inisialisasi model
73
+ print("Inisialisasi model Pix2Pix...")
74
+ pix2pix_model = Pix2PixModelLoader()
75
+
76
+ # Fungsi untuk Gradio
77
+ def colorize_image(input_image):
78
+ print("Menerima input gambar...")
79
+ return pix2pix_model.predict(input_image)
80
+
81
+ # Gradio Interface
82
+ interface = gr.Interface(
83
+ fn=colorize_image,
84
+ inputs=gr.Image(type="pil"),
85
+ outputs=gr.Image(type="pil"),
86
+ title="Pix2Pix Image Translation Model",
87
+ description="Upload gambar input untuk diproses menggunakan model Pix2Pix. Hasil gambar akan mengikuti ukuran asli input."
88
+ )
89
+
90
+ if __name__ == "__main__":
91
+ print("Meluncurkan antarmuka Gradio...")
92
+ interface.launch()
data/__init__.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This package includes all the modules related to data loading and preprocessing
2
+
3
+ To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset.
4
+ You need to implement four functions:
5
+ -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
6
+ -- <__len__>: return the size of dataset.
7
+ -- <__getitem__>: get a data point from data loader.
8
+ -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
9
+
10
+ Now you can use the dataset class by specifying flag '--dataset_mode dummy'.
11
+ See our template dataset class 'template_dataset.py' for more details.
12
+ """
13
+ import importlib
14
+ import torch.utils.data
15
+ from data.base_dataset import BaseDataset
16
+
17
+
18
+ def find_dataset_using_name(dataset_name):
19
+ """Import the module "data/[dataset_name]_dataset.py".
20
+
21
+ In the file, the class called DatasetNameDataset() will
22
+ be instantiated. It has to be a subclass of BaseDataset,
23
+ and it is case-insensitive.
24
+ """
25
+ dataset_filename = "data." + dataset_name + "_dataset"
26
+ datasetlib = importlib.import_module(dataset_filename)
27
+
28
+ dataset = None
29
+ target_dataset_name = dataset_name.replace('_', '') + 'dataset'
30
+ for name, cls in datasetlib.__dict__.items():
31
+ if name.lower() == target_dataset_name.lower() \
32
+ and issubclass(cls, BaseDataset):
33
+ dataset = cls
34
+
35
+ if dataset is None:
36
+ raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))
37
+
38
+ return dataset
39
+
40
+
41
+ def get_option_setter(dataset_name):
42
+ """Return the static method <modify_commandline_options> of the dataset class."""
43
+ dataset_class = find_dataset_using_name(dataset_name)
44
+ return dataset_class.modify_commandline_options
45
+
46
+
47
+ def create_dataset(opt):
48
+ """Create a dataset given the option.
49
+
50
+ This function wraps the class CustomDatasetDataLoader.
51
+ This is the main interface between this package and 'train.py'/'test.py'
52
+
53
+ Example:
54
+ >>> from data import create_dataset
55
+ >>> dataset = create_dataset(opt)
56
+ """
57
+ data_loader = CustomDatasetDataLoader(opt)
58
+ dataset = data_loader.load_data()
59
+ return dataset
60
+
61
+
62
+ class CustomDatasetDataLoader():
63
+ """Wrapper class of Dataset class that performs multi-threaded data loading"""
64
+
65
+ def __init__(self, opt):
66
+ """Initialize this class
67
+
68
+ Step 1: create a dataset instance given the name [dataset_mode]
69
+ Step 2: create a multi-threaded data loader.
70
+ """
71
+ self.opt = opt
72
+ dataset_class = find_dataset_using_name(opt.dataset_mode)
73
+ self.dataset = dataset_class(opt)
74
+ print("dataset [%s] was created" % type(self.dataset).__name__)
75
+ self.dataloader = torch.utils.data.DataLoader(
76
+ self.dataset,
77
+ batch_size=opt.batch_size,
78
+ shuffle=not opt.serial_batches,
79
+ num_workers=int(opt.num_threads))
80
+
81
+ def load_data(self):
82
+ return self
83
+
84
+ def __len__(self):
85
+ """Return the number of data in the dataset"""
86
+ return min(len(self.dataset), self.opt.max_dataset_size)
87
+
88
+ def __iter__(self):
89
+ """Return a batch of data"""
90
+ for i, data in enumerate(self.dataloader):
91
+ if i * self.opt.batch_size >= self.opt.max_dataset_size:
92
+ break
93
+ yield data
data/aligned_dataset.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.base_dataset import BaseDataset, get_params, get_transform
3
+ from data.image_folder import make_dataset
4
+ from PIL import Image
5
+
6
+
7
+ class AlignedDataset(BaseDataset):
8
+ """A dataset class for paired image dataset.
9
+
10
+ It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}.
11
+ During test time, you need to prepare a directory '/path/to/data/test'.
12
+ """
13
+
14
+ def __init__(self, opt):
15
+ """Initialize this dataset class.
16
+
17
+ Parameters:
18
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
19
+ """
20
+ BaseDataset.__init__(self, opt)
21
+ self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory
22
+ self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths
23
+ assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image
24
+ self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc
25
+ self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc
26
+
27
+ def __getitem__(self, index):
28
+ """Return a data point and its metadata information.
29
+
30
+ Parameters:
31
+ index - - a random integer for data indexing
32
+
33
+ Returns a dictionary that contains A, B, A_paths and B_paths
34
+ A (tensor) - - an image in the input domain
35
+ B (tensor) - - its corresponding image in the target domain
36
+ A_paths (str) - - image paths
37
+ B_paths (str) - - image paths (same as A_paths)
38
+ """
39
+ # read a image given a random integer index
40
+ AB_path = self.AB_paths[index]
41
+ AB = Image.open(AB_path).convert('RGB')
42
+ # split AB image into A and B
43
+ w, h = AB.size
44
+ w2 = int(w / 2)
45
+ A = AB.crop((0, 0, w2, h))
46
+ B = AB.crop((w2, 0, w, h))
47
+
48
+ # apply the same transform to both A and B
49
+ transform_params = get_params(self.opt, A.size)
50
+ A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1))
51
+ B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1))
52
+
53
+ A = A_transform(A)
54
+ B = B_transform(B)
55
+
56
+ return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path}
57
+
58
+ def __len__(self):
59
+ """Return the total number of images in the dataset."""
60
+ return len(self.AB_paths)
data/base_dataset.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module implements an abstract base class (ABC) 'BaseDataset' for datasets.
2
+
3
+ It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses.
4
+ """
5
+ import random
6
+ import numpy as np
7
+ import torch.utils.data as data
8
+ from PIL import Image
9
+ import torchvision.transforms as transforms
10
+ from abc import ABC, abstractmethod
11
+
12
+
13
+ class BaseDataset(data.Dataset, ABC):
14
+ """This class is an abstract base class (ABC) for datasets.
15
+
16
+ To create a subclass, you need to implement the following four functions:
17
+ -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
18
+ -- <__len__>: return the size of dataset.
19
+ -- <__getitem__>: get a data point.
20
+ -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
21
+ """
22
+
23
+ def __init__(self, opt):
24
+ """Initialize the class; save the options in the class
25
+
26
+ Parameters:
27
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
28
+ """
29
+ self.opt = opt
30
+ self.root = opt.dataroot
31
+
32
+ @staticmethod
33
+ def modify_commandline_options(parser, is_train):
34
+ """Add new dataset-specific options, and rewrite default values for existing options.
35
+
36
+ Parameters:
37
+ parser -- original option parser
38
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
39
+
40
+ Returns:
41
+ the modified parser.
42
+ """
43
+ return parser
44
+
45
+ @abstractmethod
46
+ def __len__(self):
47
+ """Return the total number of images in the dataset."""
48
+ return 0
49
+
50
+ @abstractmethod
51
+ def __getitem__(self, index):
52
+ """Return a data point and its metadata information.
53
+
54
+ Parameters:
55
+ index - - a random integer for data indexing
56
+
57
+ Returns:
58
+ a dictionary of data with their names. It ususally contains the data itself and its metadata information.
59
+ """
60
+ pass
61
+
62
+
63
+ def get_params(opt, size):
64
+ w, h = size
65
+ new_h = h
66
+ new_w = w
67
+ if opt.preprocess == 'resize_and_crop':
68
+ new_h = new_w = opt.load_size
69
+ elif opt.preprocess == 'scale_width_and_crop':
70
+ new_w = opt.load_size
71
+ new_h = opt.load_size * h // w
72
+
73
+ x = random.randint(0, np.maximum(0, new_w - opt.crop_size))
74
+ y = random.randint(0, np.maximum(0, new_h - opt.crop_size))
75
+
76
+ flip = random.random() > 0.5
77
+
78
+ return {'crop_pos': (x, y), 'flip': flip}
79
+
80
+
81
+ def get_transform(opt, params=None, grayscale=False, method=transforms.InterpolationMode.BICUBIC, convert=True):
82
+ transform_list = []
83
+ if grayscale:
84
+ transform_list.append(transforms.Grayscale(1))
85
+ if 'resize' in opt.preprocess:
86
+ osize = [opt.load_size, opt.load_size]
87
+ transform_list.append(transforms.Resize(osize, method))
88
+ elif 'scale_width' in opt.preprocess:
89
+ transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method)))
90
+
91
+ if 'crop' in opt.preprocess:
92
+ if params is None:
93
+ transform_list.append(transforms.RandomCrop(opt.crop_size))
94
+ else:
95
+ transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size)))
96
+
97
+ if opt.preprocess == 'none':
98
+ transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method)))
99
+
100
+ if not opt.no_flip:
101
+ if params is None:
102
+ transform_list.append(transforms.RandomHorizontalFlip())
103
+ elif params['flip']:
104
+ transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
105
+
106
+ if convert:
107
+ transform_list += [transforms.ToTensor()]
108
+ if grayscale:
109
+ transform_list += [transforms.Normalize((0.5,), (0.5,))]
110
+ else:
111
+ transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
112
+ return transforms.Compose(transform_list)
113
+
114
+
115
+ def __transforms2pil_resize(method):
116
+ mapper = {transforms.InterpolationMode.BILINEAR: Image.BILINEAR,
117
+ transforms.InterpolationMode.BICUBIC: Image.BICUBIC,
118
+ transforms.InterpolationMode.NEAREST: Image.NEAREST,
119
+ transforms.InterpolationMode.LANCZOS: Image.LANCZOS,}
120
+ return mapper[method]
121
+
122
+
123
+ def __make_power_2(img, base, method=transforms.InterpolationMode.BICUBIC):
124
+ method = __transforms2pil_resize(method)
125
+ ow, oh = img.size
126
+ h = int(round(oh / base) * base)
127
+ w = int(round(ow / base) * base)
128
+ if h == oh and w == ow:
129
+ return img
130
+
131
+ __print_size_warning(ow, oh, w, h)
132
+ return img.resize((w, h), method)
133
+
134
+
135
+ def __scale_width(img, target_size, crop_size, method=transforms.InterpolationMode.BICUBIC):
136
+ method = __transforms2pil_resize(method)
137
+ ow, oh = img.size
138
+ if ow == target_size and oh >= crop_size:
139
+ return img
140
+ w = target_size
141
+ h = int(max(target_size * oh / ow, crop_size))
142
+ return img.resize((w, h), method)
143
+
144
+
145
+ def __crop(img, pos, size):
146
+ ow, oh = img.size
147
+ x1, y1 = pos
148
+ tw = th = size
149
+ if (ow > tw or oh > th):
150
+ return img.crop((x1, y1, x1 + tw, y1 + th))
151
+ return img
152
+
153
+
154
+ def __flip(img, flip):
155
+ if flip:
156
+ return img.transpose(Image.FLIP_LEFT_RIGHT)
157
+ return img
158
+
159
+
160
+ def __print_size_warning(ow, oh, w, h):
161
+ """Print warning information about image size(only print once)"""
162
+ if not hasattr(__print_size_warning, 'has_printed'):
163
+ print("The image size needs to be a multiple of 4. "
164
+ "The loaded image size was (%d, %d), so it was adjusted to "
165
+ "(%d, %d). This adjustment will be done to all images "
166
+ "whose sizes are not multiples of 4" % (ow, oh, w, h))
167
+ __print_size_warning.has_printed = True
data/colorization_dataset.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.base_dataset import BaseDataset, get_transform
3
+ from data.image_folder import make_dataset
4
+ from skimage import color # require skimage
5
+ from PIL import Image
6
+ import numpy as np
7
+ import torchvision.transforms as transforms
8
+
9
+
10
+ class ColorizationDataset(BaseDataset):
11
+ """This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space.
12
+
13
+ This dataset is required by pix2pix-based colorization model ('--model colorization')
14
+ """
15
+ @staticmethod
16
+ def modify_commandline_options(parser, is_train):
17
+ """Add new dataset-specific options, and rewrite default values for existing options.
18
+
19
+ Parameters:
20
+ parser -- original option parser
21
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
22
+
23
+ Returns:
24
+ the modified parser.
25
+
26
+ By default, the number of channels for input image is 1 (L) and
27
+ the number of channels for output image is 2 (ab). The direction is from A to B
28
+ """
29
+ parser.set_defaults(input_nc=1, output_nc=2, direction='AtoB')
30
+ return parser
31
+
32
+ def __init__(self, opt):
33
+ """Initialize this dataset class.
34
+
35
+ Parameters:
36
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
37
+ """
38
+ BaseDataset.__init__(self, opt)
39
+ self.dir = os.path.join(opt.dataroot, opt.phase)
40
+ self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size))
41
+ assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB')
42
+ self.transform = get_transform(self.opt, convert=False)
43
+
44
+ def __getitem__(self, index):
45
+ """Return a data point and its metadata information.
46
+
47
+ Parameters:
48
+ index - - a random integer for data indexing
49
+
50
+ Returns a dictionary that contains A, B, A_paths and B_paths
51
+ A (tensor) - - the L channel of an image
52
+ B (tensor) - - the ab channels of the same image
53
+ A_paths (str) - - image paths
54
+ B_paths (str) - - image paths (same as A_paths)
55
+ """
56
+ path = self.AB_paths[index]
57
+ im = Image.open(path).convert('RGB')
58
+ im = self.transform(im)
59
+ im = np.array(im)
60
+ lab = color.rgb2lab(im).astype(np.float32)
61
+ lab_t = transforms.ToTensor()(lab)
62
+ A = lab_t[[0], ...] / 50.0 - 1.0
63
+ B = lab_t[[1, 2], ...] / 110.0
64
+ return {'A': A, 'B': B, 'A_paths': path, 'B_paths': path}
65
+
66
+ def __len__(self):
67
+ """Return the total number of images in the dataset."""
68
+ return len(self.AB_paths)
data/image_folder.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A modified image folder class
2
+
3
+ We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py)
4
+ so that this class can load images from both current directory and its subdirectories.
5
+ """
6
+
7
+ import torch.utils.data as data
8
+
9
+ from PIL import Image
10
+ import os
11
+
12
+ IMG_EXTENSIONS = [
13
+ '.jpg', '.JPG', '.jpeg', '.JPEG',
14
+ '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
15
+ '.tif', '.TIF', '.tiff', '.TIFF',
16
+ ]
17
+
18
+
19
+ def is_image_file(filename):
20
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
21
+
22
+
23
+ def make_dataset(dir, max_dataset_size=float("inf")):
24
+ images = []
25
+ assert os.path.isdir(dir), '%s is not a valid directory' % dir
26
+
27
+ for root, _, fnames in sorted(os.walk(dir)):
28
+ for fname in fnames:
29
+ if is_image_file(fname):
30
+ path = os.path.join(root, fname)
31
+ images.append(path)
32
+ return images[:min(max_dataset_size, len(images))]
33
+
34
+
35
+ def default_loader(path):
36
+ return Image.open(path).convert('RGB')
37
+
38
+
39
+ class ImageFolder(data.Dataset):
40
+
41
+ def __init__(self, root, transform=None, return_paths=False,
42
+ loader=default_loader):
43
+ imgs = make_dataset(root)
44
+ if len(imgs) == 0:
45
+ raise(RuntimeError("Found 0 images in: " + root + "\n"
46
+ "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
47
+
48
+ self.root = root
49
+ self.imgs = imgs
50
+ self.transform = transform
51
+ self.return_paths = return_paths
52
+ self.loader = loader
53
+
54
+ def __getitem__(self, index):
55
+ path = self.imgs[index]
56
+ img = self.loader(path)
57
+ if self.transform is not None:
58
+ img = self.transform(img)
59
+ if self.return_paths:
60
+ return img, path
61
+ else:
62
+ return img
63
+
64
+ def __len__(self):
65
+ return len(self.imgs)
data/single_dataset.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data.base_dataset import BaseDataset, get_transform
2
+ from data.image_folder import make_dataset
3
+ from PIL import Image
4
+
5
+
6
+ class SingleDataset(BaseDataset):
7
+ """This dataset class can load a set of images specified by the path --dataroot /path/to/data.
8
+
9
+ It can be used for generating CycleGAN results only for one side with the model option '-model test'.
10
+ """
11
+
12
+ def __init__(self, opt):
13
+ """Initialize this dataset class.
14
+
15
+ Parameters:
16
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
17
+ """
18
+ BaseDataset.__init__(self, opt)
19
+ self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size))
20
+ input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc
21
+ self.transform = get_transform(opt, grayscale=(input_nc == 1))
22
+
23
+ def __getitem__(self, index):
24
+ """Return a data point and its metadata information.
25
+
26
+ Parameters:
27
+ index - - a random integer for data indexing
28
+
29
+ Returns a dictionary that contains A and A_paths
30
+ A(tensor) - - an image in one domain
31
+ A_paths(str) - - the path of the image
32
+ """
33
+ A_path = self.A_paths[index]
34
+ A_img = Image.open(A_path).convert('RGB')
35
+ A = self.transform(A_img)
36
+ return {'A': A, 'A_paths': A_path}
37
+
38
+ def __len__(self):
39
+ """Return the total number of images in the dataset."""
40
+ return len(self.A_paths)
data/template_dataset.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Dataset class template
2
+
3
+ This module provides a template for users to implement custom datasets.
4
+ You can specify '--dataset_mode template' to use this dataset.
5
+ The class name should be consistent with both the filename and its dataset_mode option.
6
+ The filename should be <dataset_mode>_dataset.py
7
+ The class name should be <Dataset_mode>Dataset.py
8
+ You need to implement the following functions:
9
+ -- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options.
10
+ -- <__init__>: Initialize this dataset class.
11
+ -- <__getitem__>: Return a data point and its metadata information.
12
+ -- <__len__>: Return the number of images.
13
+ """
14
+ from data.base_dataset import BaseDataset, get_transform
15
+ # from data.image_folder import make_dataset
16
+ # from PIL import Image
17
+
18
+
19
+ class TemplateDataset(BaseDataset):
20
+ """A template dataset class for you to implement custom datasets."""
21
+ @staticmethod
22
+ def modify_commandline_options(parser, is_train):
23
+ """Add new dataset-specific options, and rewrite default values for existing options.
24
+
25
+ Parameters:
26
+ parser -- original option parser
27
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
28
+
29
+ Returns:
30
+ the modified parser.
31
+ """
32
+ parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option')
33
+ parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values
34
+ return parser
35
+
36
+ def __init__(self, opt):
37
+ """Initialize this dataset class.
38
+
39
+ Parameters:
40
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
41
+
42
+ A few things can be done here.
43
+ - save the options (have been done in BaseDataset)
44
+ - get image paths and meta information of the dataset.
45
+ - define the image transformation.
46
+ """
47
+ # save the option and dataset root
48
+ BaseDataset.__init__(self, opt)
49
+ # get the image paths of your dataset;
50
+ self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root
51
+ # define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function
52
+ self.transform = get_transform(opt)
53
+
54
+ def __getitem__(self, index):
55
+ """Return a data point and its metadata information.
56
+
57
+ Parameters:
58
+ index -- a random integer for data indexing
59
+
60
+ Returns:
61
+ a dictionary of data with their names. It usually contains the data itself and its metadata information.
62
+
63
+ Step 1: get a random image path: e.g., path = self.image_paths[index]
64
+ Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB').
65
+ Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image)
66
+ Step 4: return a data point as a dictionary.
67
+ """
68
+ path = 'temp' # needs to be a string
69
+ data_A = None # needs to be a tensor
70
+ data_B = None # needs to be a tensor
71
+ return {'data_A': data_A, 'data_B': data_B, 'path': path}
72
+
73
+ def __len__(self):
74
+ """Return the total number of images."""
75
+ return len(self.image_paths)
data/unaligned_dataset.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.base_dataset import BaseDataset, get_transform
3
+ from data.image_folder import make_dataset
4
+ from PIL import Image
5
+ import random
6
+
7
+
8
+ class UnalignedDataset(BaseDataset):
9
+ """
10
+ This dataset class can load unaligned/unpaired datasets.
11
+
12
+ It requires two directories to host training images from domain A '/path/to/data/trainA'
13
+ and from domain B '/path/to/data/trainB' respectively.
14
+ You can train the model with the dataset flag '--dataroot /path/to/data'.
15
+ Similarly, you need to prepare two directories:
16
+ '/path/to/data/testA' and '/path/to/data/testB' during test time.
17
+ """
18
+
19
+ def __init__(self, opt):
20
+ """Initialize this dataset class.
21
+
22
+ Parameters:
23
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
24
+ """
25
+ BaseDataset.__init__(self, opt)
26
+ self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA'
27
+ self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB'
28
+
29
+ self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA'
30
+ self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB'
31
+ self.A_size = len(self.A_paths) # get the size of dataset A
32
+ self.B_size = len(self.B_paths) # get the size of dataset B
33
+ btoA = self.opt.direction == 'BtoA'
34
+ input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image
35
+ output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image
36
+ self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1))
37
+ self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1))
38
+
39
+ def __getitem__(self, index):
40
+ """Return a data point and its metadata information.
41
+
42
+ Parameters:
43
+ index (int) -- a random integer for data indexing
44
+
45
+ Returns a dictionary that contains A, B, A_paths and B_paths
46
+ A (tensor) -- an image in the input domain
47
+ B (tensor) -- its corresponding image in the target domain
48
+ A_paths (str) -- image paths
49
+ B_paths (str) -- image paths
50
+ """
51
+ A_path = self.A_paths[index % self.A_size] # make sure index is within then range
52
+ if self.opt.serial_batches: # make sure index is within then range
53
+ index_B = index % self.B_size
54
+ else: # randomize the index for domain B to avoid fixed pairs.
55
+ index_B = random.randint(0, self.B_size - 1)
56
+ B_path = self.B_paths[index_B]
57
+ A_img = Image.open(A_path).convert('RGB')
58
+ B_img = Image.open(B_path).convert('RGB')
59
+ # apply image transformation
60
+ A = self.transform_A(A_img)
61
+ B = self.transform_B(B_img)
62
+
63
+ return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path}
64
+
65
+ def __len__(self):
66
+ """Return the total number of images in the dataset.
67
+
68
+ As we have two datasets with potentially different number of images,
69
+ we take a maximum of
70
+ """
71
+ return max(self.A_size, self.B_size)
latest_net_G.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5206e3e1590244f4c44e6a30c8555d364277f00f3dbfeee226cef171b71f0dad
3
+ size 217710350
models/__init__.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This package contains modules related to objective functions, optimizations, and network architectures.
2
+
3
+ To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
4
+ You need to implement the following five functions:
5
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
6
+ -- <set_input>: unpack data from dataset and apply preprocessing.
7
+ -- <forward>: produce intermediate results.
8
+ -- <optimize_parameters>: calculate loss, gradients, and update network weights.
9
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
10
+
11
+ In the function <__init__>, you need to define four lists:
12
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
13
+ -- self.model_names (str list): define networks used in our training.
14
+ -- self.visual_names (str list): specify the images that you want to display and save.
15
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
16
+
17
+ Now you can use the model class by specifying flag '--model dummy'.
18
+ See our template model class 'template_model.py' for more details.
19
+ """
20
+
21
+ import importlib
22
+ from models.base_model import BaseModel
23
+
24
+
25
+ def find_model_using_name(model_name):
26
+ """Import the module "models/[model_name]_model.py".
27
+
28
+ In the file, the class called DatasetNameModel() will
29
+ be instantiated. It has to be a subclass of BaseModel,
30
+ and it is case-insensitive.
31
+ """
32
+ model_filename = "models." + model_name + "_model"
33
+ modellib = importlib.import_module(model_filename)
34
+ model = None
35
+ target_model_name = model_name.replace('_', '') + 'model'
36
+ for name, cls in modellib.__dict__.items():
37
+ if name.lower() == target_model_name.lower() \
38
+ and issubclass(cls, BaseModel):
39
+ model = cls
40
+
41
+ if model is None:
42
+ print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
43
+ exit(0)
44
+
45
+ return model
46
+
47
+
48
+ def get_option_setter(model_name):
49
+ """Return the static method <modify_commandline_options> of the model class."""
50
+ model_class = find_model_using_name(model_name)
51
+ return model_class.modify_commandline_options
52
+
53
+
54
+ def create_model(opt):
55
+ """Create a model given the option.
56
+
57
+ This function warps the class CustomDatasetDataLoader.
58
+ This is the main interface between this package and 'train.py'/'test.py'
59
+
60
+ Example:
61
+ >>> from models import create_model
62
+ >>> model = create_model(opt)
63
+ """
64
+ model = find_model_using_name(opt.model)
65
+ instance = model(opt)
66
+ print("model [%s] was created" % type(instance).__name__)
67
+ return instance
models/base_model.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from collections import OrderedDict
4
+ from abc import ABC, abstractmethod
5
+ from . import networks
6
+
7
+
8
+ class BaseModel(ABC):
9
+ """This class is an abstract base class (ABC) for models.
10
+ To create a subclass, you need to implement the following five functions:
11
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
12
+ -- <set_input>: unpack data from dataset and apply preprocessing.
13
+ -- <forward>: produce intermediate results.
14
+ -- <optimize_parameters>: calculate losses, gradients, and update network weights.
15
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
16
+ """
17
+
18
+ def __init__(self, opt):
19
+ """Initialize the BaseModel class.
20
+
21
+ Parameters:
22
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
23
+
24
+ When creating your custom class, you need to implement your own initialization.
25
+ In this function, you should first call <BaseModel.__init__(self, opt)>
26
+ Then, you need to define four lists:
27
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
28
+ -- self.model_names (str list): define networks used in our training.
29
+ -- self.visual_names (str list): specify the images that you want to display and save.
30
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
31
+ """
32
+ self.opt = opt
33
+ self.gpu_ids = opt.gpu_ids
34
+ self.isTrain = opt.isTrain
35
+ self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU
36
+ self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir
37
+ if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
38
+ torch.backends.cudnn.benchmark = True
39
+ self.loss_names = []
40
+ self.model_names = []
41
+ self.visual_names = []
42
+ self.optimizers = []
43
+ self.image_paths = []
44
+ self.metric = 0 # used for learning rate policy 'plateau'
45
+
46
+ @staticmethod
47
+ def modify_commandline_options(parser, is_train):
48
+ """Add new model-specific options, and rewrite default values for existing options.
49
+
50
+ Parameters:
51
+ parser -- original option parser
52
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
53
+
54
+ Returns:
55
+ the modified parser.
56
+ """
57
+ return parser
58
+
59
+ @abstractmethod
60
+ def set_input(self, input):
61
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
62
+
63
+ Parameters:
64
+ input (dict): includes the data itself and its metadata information.
65
+ """
66
+ pass
67
+
68
+ @abstractmethod
69
+ def forward(self):
70
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
71
+ pass
72
+
73
+ @abstractmethod
74
+ def optimize_parameters(self):
75
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
76
+ pass
77
+
78
+ def setup(self, opt):
79
+ """Load and print networks; create schedulers
80
+
81
+ Parameters:
82
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
83
+ """
84
+ if self.isTrain:
85
+ self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
86
+ if not self.isTrain or opt.continue_train:
87
+ load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
88
+ self.load_networks(load_suffix)
89
+ self.print_networks(opt.verbose)
90
+
91
+ def eval(self):
92
+ """Make models eval mode during test time"""
93
+ for name in self.model_names:
94
+ if isinstance(name, str):
95
+ net = getattr(self, 'net' + name)
96
+ net.eval()
97
+
98
+ def test(self):
99
+ """Forward function used in test time.
100
+
101
+ This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
102
+ It also calls <compute_visuals> to produce additional visualization results
103
+ """
104
+ with torch.no_grad():
105
+ self.forward()
106
+ self.compute_visuals()
107
+
108
+ def compute_visuals(self):
109
+ """Calculate additional output images for visdom and HTML visualization"""
110
+ pass
111
+
112
+ def get_image_paths(self):
113
+ """ Return image paths that are used to load current data"""
114
+ return self.image_paths
115
+
116
+ def update_learning_rate(self):
117
+ """Update learning rates for all the networks; called at the end of every epoch"""
118
+ old_lr = self.optimizers[0].param_groups[0]['lr']
119
+ for scheduler in self.schedulers:
120
+ if self.opt.lr_policy == 'plateau':
121
+ scheduler.step(self.metric)
122
+ else:
123
+ scheduler.step()
124
+
125
+ lr = self.optimizers[0].param_groups[0]['lr']
126
+ print('learning rate %.7f -> %.7f' % (old_lr, lr))
127
+
128
+ def get_current_visuals(self):
129
+ """Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
130
+ visual_ret = OrderedDict()
131
+ for name in self.visual_names:
132
+ if isinstance(name, str):
133
+ visual_ret[name] = getattr(self, name)
134
+ return visual_ret
135
+
136
+ def get_current_losses(self):
137
+ """Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
138
+ errors_ret = OrderedDict()
139
+ for name in self.loss_names:
140
+ if isinstance(name, str):
141
+ errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
142
+ return errors_ret
143
+
144
+ def save_networks(self, epoch):
145
+ """Save all the networks to the disk.
146
+
147
+ Parameters:
148
+ epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
149
+ """
150
+ for name in self.model_names:
151
+ if isinstance(name, str):
152
+ save_filename = '%s_net_%s.pth' % (epoch, name)
153
+ save_path = os.path.join(self.save_dir, save_filename)
154
+ net = getattr(self, 'net' + name)
155
+
156
+ if len(self.gpu_ids) > 0 and torch.cuda.is_available():
157
+ torch.save(net.module.cpu().state_dict(), save_path)
158
+ net.cuda(self.gpu_ids[0])
159
+ else:
160
+ torch.save(net.cpu().state_dict(), save_path)
161
+
162
+ def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
163
+ """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
164
+ key = keys[i]
165
+ if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
166
+ if module.__class__.__name__.startswith('InstanceNorm') and \
167
+ (key == 'running_mean' or key == 'running_var'):
168
+ if getattr(module, key) is None:
169
+ state_dict.pop('.'.join(keys))
170
+ if module.__class__.__name__.startswith('InstanceNorm') and \
171
+ (key == 'num_batches_tracked'):
172
+ state_dict.pop('.'.join(keys))
173
+ else:
174
+ self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
175
+
176
+ def load_networks(self, epoch):
177
+ """Load all the networks from the disk.
178
+
179
+ Parameters:
180
+ epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
181
+ """
182
+ for name in self.model_names:
183
+ if isinstance(name, str):
184
+ load_filename = '%s_net_%s.pth' % (epoch, name)
185
+ load_path = os.path.join(self.save_dir, load_filename)
186
+ net = getattr(self, 'net' + name)
187
+ if isinstance(net, torch.nn.DataParallel):
188
+ net = net.module
189
+ print('loading the model from %s' % load_path)
190
+ # if you are using PyTorch newer than 0.4 (e.g., built from
191
+ # GitHub source), you can remove str() on self.device
192
+ state_dict = torch.load(load_path, map_location=str(self.device))
193
+ if hasattr(state_dict, '_metadata'):
194
+ del state_dict._metadata
195
+
196
+ # patch InstanceNorm checkpoints prior to 0.4
197
+ for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
198
+ self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
199
+ net.load_state_dict(state_dict)
200
+
201
+ def print_networks(self, verbose):
202
+ """Print the total number of parameters in the network and (if verbose) network architecture
203
+
204
+ Parameters:
205
+ verbose (bool) -- if verbose: print the network architecture
206
+ """
207
+ print('---------- Networks initialized -------------')
208
+ for name in self.model_names:
209
+ if isinstance(name, str):
210
+ net = getattr(self, 'net' + name)
211
+ num_params = 0
212
+ for param in net.parameters():
213
+ num_params += param.numel()
214
+ if verbose:
215
+ print(net)
216
+ print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
217
+ print('-----------------------------------------------')
218
+
219
+ def set_requires_grad(self, nets, requires_grad=False):
220
+ """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
221
+ Parameters:
222
+ nets (network list) -- a list of networks
223
+ requires_grad (bool) -- whether the networks require gradients or not
224
+ """
225
+ if not isinstance(nets, list):
226
+ nets = [nets]
227
+ for net in nets:
228
+ if net is not None:
229
+ for param in net.parameters():
230
+ param.requires_grad = requires_grad
models/colorization_model.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pix2pix_model import Pix2PixModel
2
+ import torch
3
+ from skimage import color # used for lab2rgb
4
+ import numpy as np
5
+
6
+
7
+ class ColorizationModel(Pix2PixModel):
8
+ """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images).
9
+
10
+ The model training requires '-dataset_model colorization' dataset.
11
+ It trains a pix2pix model, mapping from L channel to ab channels in Lab color space.
12
+ By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'.
13
+ """
14
+ @staticmethod
15
+ def modify_commandline_options(parser, is_train=True):
16
+ """Add new dataset-specific options, and rewrite default values for existing options.
17
+
18
+ Parameters:
19
+ parser -- original option parser
20
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
21
+
22
+ Returns:
23
+ the modified parser.
24
+
25
+ By default, we use 'colorization' dataset for this model.
26
+ See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper)
27
+ """
28
+ Pix2PixModel.modify_commandline_options(parser, is_train)
29
+ parser.set_defaults(dataset_mode='colorization')
30
+ return parser
31
+
32
+ def __init__(self, opt):
33
+ """Initialize the class.
34
+
35
+ Parameters:
36
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
37
+
38
+ For visualization, we set 'visual_names' as 'real_A' (input real image),
39
+ 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image)
40
+ We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'.
41
+ we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'.
42
+ """
43
+ # reuse the pix2pix model
44
+ Pix2PixModel.__init__(self, opt)
45
+ # specify the images to be visualized.
46
+ self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb']
47
+
48
+ def lab2rgb(self, L, AB):
49
+ """Convert an Lab tensor image to a RGB numpy output
50
+ Parameters:
51
+ L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
52
+ AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
53
+
54
+ Returns:
55
+ rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
56
+ """
57
+ AB2 = AB * 110.0
58
+ L2 = (L + 1.0) * 50.0
59
+ Lab = torch.cat([L2, AB2], dim=1)
60
+ Lab = Lab[0].data.cpu().float().numpy()
61
+ Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
62
+ rgb = color.lab2rgb(Lab) * 255
63
+ return rgb
64
+
65
+ def compute_visuals(self):
66
+ """Calculate additional output images for visdom and HTML visualization"""
67
+ self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B)
68
+ self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B)
models/cycle_gan_model.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import itertools
3
+ from util.image_pool import ImagePool
4
+ from .base_model import BaseModel
5
+ from . import networks
6
+
7
+
8
+ class CycleGANModel(BaseModel):
9
+ """
10
+ This class implements the CycleGAN model, for learning image-to-image translation without paired data.
11
+
12
+ The model training requires '--dataset_mode unaligned' dataset.
13
+ By default, it uses a '--netG resnet_9blocks' ResNet generator,
14
+ a '--netD basic' discriminator (PatchGAN introduced by pix2pix),
15
+ and a least-square GANs objective ('--gan_mode lsgan').
16
+
17
+ CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf
18
+ """
19
+ @staticmethod
20
+ def modify_commandline_options(parser, is_train=True):
21
+ """Add new dataset-specific options, and rewrite default values for existing options.
22
+
23
+ Parameters:
24
+ parser -- original option parser
25
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
26
+
27
+ Returns:
28
+ the modified parser.
29
+
30
+ For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses.
31
+ A (source domain), B (target domain).
32
+ Generators: G_A: A -> B; G_B: B -> A.
33
+ Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A.
34
+ Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper)
35
+ Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper)
36
+ Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper)
37
+ Dropout is not used in the original CycleGAN paper.
38
+ """
39
+ parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout
40
+ if is_train:
41
+ parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)')
42
+ parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)')
43
+ parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1')
44
+
45
+ return parser
46
+
47
+ def __init__(self, opt):
48
+ """Initialize the CycleGAN class.
49
+
50
+ Parameters:
51
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
52
+ """
53
+ BaseModel.__init__(self, opt)
54
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
55
+ self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
56
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
57
+ visual_names_A = ['real_A', 'fake_B', 'rec_A']
58
+ visual_names_B = ['real_B', 'fake_A', 'rec_B']
59
+ if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
60
+ visual_names_A.append('idt_B')
61
+ visual_names_B.append('idt_A')
62
+
63
+ self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B
64
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
65
+ if self.isTrain:
66
+ self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
67
+ else: # during test time, only load Gs
68
+ self.model_names = ['G_A', 'G_B']
69
+
70
+ # define networks (both Generators and discriminators)
71
+ # The naming is different from those used in the paper.
72
+ # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
73
+ self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
74
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
75
+ self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
76
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
77
+
78
+ if self.isTrain: # define discriminators
79
+ self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
80
+ opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
81
+ self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
82
+ opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
83
+
84
+ if self.isTrain:
85
+ if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels
86
+ assert(opt.input_nc == opt.output_nc)
87
+ self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
88
+ self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
89
+ # define loss functions
90
+ self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss.
91
+ self.criterionCycle = torch.nn.L1Loss()
92
+ self.criterionIdt = torch.nn.L1Loss()
93
+ # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
94
+ self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
95
+ self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
96
+ self.optimizers.append(self.optimizer_G)
97
+ self.optimizers.append(self.optimizer_D)
98
+
99
+ def set_input(self, input):
100
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
101
+
102
+ Parameters:
103
+ input (dict): include the data itself and its metadata information.
104
+
105
+ The option 'direction' can be used to swap domain A and domain B.
106
+ """
107
+ AtoB = self.opt.direction == 'AtoB'
108
+ self.real_A = input['A' if AtoB else 'B'].to(self.device)
109
+ self.real_B = input['B' if AtoB else 'A'].to(self.device)
110
+ self.image_paths = input['A_paths' if AtoB else 'B_paths']
111
+
112
+ def forward(self):
113
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
114
+ self.fake_B = self.netG_A(self.real_A) # G_A(A)
115
+ self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A))
116
+ self.fake_A = self.netG_B(self.real_B) # G_B(B)
117
+ self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B))
118
+
119
+ def backward_D_basic(self, netD, real, fake):
120
+ """Calculate GAN loss for the discriminator
121
+
122
+ Parameters:
123
+ netD (network) -- the discriminator D
124
+ real (tensor array) -- real images
125
+ fake (tensor array) -- images generated by a generator
126
+
127
+ Return the discriminator loss.
128
+ We also call loss_D.backward() to calculate the gradients.
129
+ """
130
+ # Real
131
+ pred_real = netD(real)
132
+ loss_D_real = self.criterionGAN(pred_real, True)
133
+ # Fake
134
+ pred_fake = netD(fake.detach())
135
+ loss_D_fake = self.criterionGAN(pred_fake, False)
136
+ # Combined loss and calculate gradients
137
+ loss_D = (loss_D_real + loss_D_fake) * 0.5
138
+ loss_D.backward()
139
+ return loss_D
140
+
141
+ def backward_D_A(self):
142
+ """Calculate GAN loss for discriminator D_A"""
143
+ fake_B = self.fake_B_pool.query(self.fake_B)
144
+ self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)
145
+
146
+ def backward_D_B(self):
147
+ """Calculate GAN loss for discriminator D_B"""
148
+ fake_A = self.fake_A_pool.query(self.fake_A)
149
+ self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
150
+
151
+ def backward_G(self):
152
+ """Calculate the loss for generators G_A and G_B"""
153
+ lambda_idt = self.opt.lambda_identity
154
+ lambda_A = self.opt.lambda_A
155
+ lambda_B = self.opt.lambda_B
156
+ # Identity loss
157
+ if lambda_idt > 0:
158
+ # G_A should be identity if real_B is fed: ||G_A(B) - B||
159
+ self.idt_A = self.netG_A(self.real_B)
160
+ self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
161
+ # G_B should be identity if real_A is fed: ||G_B(A) - A||
162
+ self.idt_B = self.netG_B(self.real_A)
163
+ self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
164
+ else:
165
+ self.loss_idt_A = 0
166
+ self.loss_idt_B = 0
167
+
168
+ # GAN loss D_A(G_A(A))
169
+ self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
170
+ # GAN loss D_B(G_B(B))
171
+ self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
172
+ # Forward cycle loss || G_B(G_A(A)) - A||
173
+ self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
174
+ # Backward cycle loss || G_A(G_B(B)) - B||
175
+ self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
176
+ # combined loss and calculate gradients
177
+ self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B
178
+ self.loss_G.backward()
179
+
180
+ def optimize_parameters(self):
181
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
182
+ # forward
183
+ self.forward() # compute fake images and reconstruction images.
184
+ # G_A and G_B
185
+ self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs
186
+ self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero
187
+ self.backward_G() # calculate gradients for G_A and G_B
188
+ self.optimizer_G.step() # update G_A and G_B's weights
189
+ # D_A and D_B
190
+ self.set_requires_grad([self.netD_A, self.netD_B], True)
191
+ self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero
192
+ self.backward_D_A() # calculate gradients for D_A
193
+ self.backward_D_B() # calculate graidents for D_B
194
+ self.optimizer_D.step() # update D_A and D_B's weights
models/networks.py ADDED
@@ -0,0 +1,616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import init
4
+ import functools
5
+ from torch.optim import lr_scheduler
6
+
7
+
8
+ ###############################################################################
9
+ # Helper Functions
10
+ ###############################################################################
11
+
12
+
13
+ class Identity(nn.Module):
14
+ def forward(self, x):
15
+ return x
16
+
17
+
18
+ def get_norm_layer(norm_type='instance'):
19
+ """Return a normalization layer
20
+
21
+ Parameters:
22
+ norm_type (str) -- the name of the normalization layer: batch | instance | none
23
+
24
+ For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
25
+ For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
26
+ """
27
+ if norm_type == 'batch':
28
+ norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
29
+ elif norm_type == 'instance':
30
+ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
31
+ elif norm_type == 'none':
32
+ def norm_layer(x):
33
+ return Identity()
34
+ else:
35
+ raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
36
+ return norm_layer
37
+
38
+
39
+ def get_scheduler(optimizer, opt):
40
+ """Return a learning rate scheduler
41
+
42
+ Parameters:
43
+ optimizer -- the optimizer of the network
44
+ opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. 
45
+ opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
46
+
47
+ For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
48
+ and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
49
+ For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
50
+ See https://pytorch.org/docs/stable/optim.html for more details.
51
+ """
52
+ if opt.lr_policy == 'linear':
53
+ def lambda_rule(epoch):
54
+ lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
55
+ return lr_l
56
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
57
+ elif opt.lr_policy == 'step':
58
+ scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
59
+ elif opt.lr_policy == 'plateau':
60
+ scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
61
+ elif opt.lr_policy == 'cosine':
62
+ scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
63
+ else:
64
+ return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
65
+ return scheduler
66
+
67
+
68
+ def init_weights(net, init_type='normal', init_gain=0.02):
69
+ """Initialize network weights.
70
+
71
+ Parameters:
72
+ net (network) -- network to be initialized
73
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
74
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
75
+
76
+ We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
77
+ work better for some applications. Feel free to try yourself.
78
+ """
79
+ def init_func(m): # define the initialization function
80
+ classname = m.__class__.__name__
81
+ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
82
+ if init_type == 'normal':
83
+ init.normal_(m.weight.data, 0.0, init_gain)
84
+ elif init_type == 'xavier':
85
+ init.xavier_normal_(m.weight.data, gain=init_gain)
86
+ elif init_type == 'kaiming':
87
+ init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
88
+ elif init_type == 'orthogonal':
89
+ init.orthogonal_(m.weight.data, gain=init_gain)
90
+ else:
91
+ raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
92
+ if hasattr(m, 'bias') and m.bias is not None:
93
+ init.constant_(m.bias.data, 0.0)
94
+ elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
95
+ init.normal_(m.weight.data, 1.0, init_gain)
96
+ init.constant_(m.bias.data, 0.0)
97
+
98
+ print('initialize network with %s' % init_type)
99
+ net.apply(init_func) # apply the initialization function <init_func>
100
+
101
+
102
+ def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
103
+ """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
104
+ Parameters:
105
+ net (network) -- the network to be initialized
106
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
107
+ gain (float) -- scaling factor for normal, xavier and orthogonal.
108
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
109
+
110
+ Return an initialized network.
111
+ """
112
+ if len(gpu_ids) > 0:
113
+ assert(torch.cuda.is_available())
114
+ net.to(gpu_ids[0])
115
+ net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
116
+ init_weights(net, init_type, init_gain=init_gain)
117
+ return net
118
+
119
+
120
+ def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
121
+ """Create a generator
122
+
123
+ Parameters:
124
+ input_nc (int) -- the number of channels in input images
125
+ output_nc (int) -- the number of channels in output images
126
+ ngf (int) -- the number of filters in the last conv layer
127
+ netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128
128
+ norm (str) -- the name of normalization layers used in the network: batch | instance | none
129
+ use_dropout (bool) -- if use dropout layers.
130
+ init_type (str) -- the name of our initialization method.
131
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
132
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
133
+
134
+ Returns a generator
135
+
136
+ Our current implementation provides two types of generators:
137
+ U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images)
138
+ The original U-Net paper: https://arxiv.org/abs/1505.04597
139
+
140
+ Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks)
141
+ Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations.
142
+ We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style).
143
+
144
+
145
+ The generator has been initialized by <init_net>. It uses RELU for non-linearity.
146
+ """
147
+ net = None
148
+ norm_layer = get_norm_layer(norm_type=norm)
149
+
150
+ if netG == 'resnet_9blocks':
151
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
152
+ elif netG == 'resnet_6blocks':
153
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
154
+ elif netG == 'unet_128':
155
+ net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
156
+ elif netG == 'unet_256':
157
+ net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
158
+ else:
159
+ raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
160
+ return init_net(net, init_type, init_gain, gpu_ids)
161
+
162
+
163
+ def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
164
+ """Create a discriminator
165
+
166
+ Parameters:
167
+ input_nc (int) -- the number of channels in input images
168
+ ndf (int) -- the number of filters in the first conv layer
169
+ netD (str) -- the architecture's name: basic | n_layers | pixel
170
+ n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
171
+ norm (str) -- the type of normalization layers used in the network.
172
+ init_type (str) -- the name of the initialization method.
173
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
174
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
175
+
176
+ Returns a discriminator
177
+
178
+ Our current implementation provides three types of discriminators:
179
+ [basic]: 'PatchGAN' classifier described in the original pix2pix paper.
180
+ It can classify whether 70×70 overlapping patches are real or fake.
181
+ Such a patch-level discriminator architecture has fewer parameters
182
+ than a full-image discriminator and can work on arbitrarily-sized images
183
+ in a fully convolutional fashion.
184
+
185
+ [n_layers]: With this mode, you can specify the number of conv layers in the discriminator
186
+ with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).)
187
+
188
+ [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not.
189
+ It encourages greater color diversity but has no effect on spatial statistics.
190
+
191
+ The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity.
192
+ """
193
+ net = None
194
+ norm_layer = get_norm_layer(norm_type=norm)
195
+
196
+ if netD == 'basic': # default PatchGAN classifier
197
+ net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
198
+ elif netD == 'n_layers': # more options
199
+ net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
200
+ elif netD == 'pixel': # classify if each pixel is real or fake
201
+ net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
202
+ else:
203
+ raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
204
+ return init_net(net, init_type, init_gain, gpu_ids)
205
+
206
+
207
+ ##############################################################################
208
+ # Classes
209
+ ##############################################################################
210
+ class GANLoss(nn.Module):
211
+ """Define different GAN objectives.
212
+
213
+ The GANLoss class abstracts away the need to create the target label tensor
214
+ that has the same size as the input.
215
+ """
216
+
217
+ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
218
+ """ Initialize the GANLoss class.
219
+
220
+ Parameters:
221
+ gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
222
+ target_real_label (bool) - - label for a real image
223
+ target_fake_label (bool) - - label of a fake image
224
+
225
+ Note: Do not use sigmoid as the last layer of Discriminator.
226
+ LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
227
+ """
228
+ super(GANLoss, self).__init__()
229
+ self.register_buffer('real_label', torch.tensor(target_real_label))
230
+ self.register_buffer('fake_label', torch.tensor(target_fake_label))
231
+ self.gan_mode = gan_mode
232
+ if gan_mode == 'lsgan':
233
+ self.loss = nn.MSELoss()
234
+ elif gan_mode == 'vanilla':
235
+ self.loss = nn.BCEWithLogitsLoss()
236
+ elif gan_mode in ['wgangp']:
237
+ self.loss = None
238
+ else:
239
+ raise NotImplementedError('gan mode %s not implemented' % gan_mode)
240
+
241
+ def get_target_tensor(self, prediction, target_is_real):
242
+ """Create label tensors with the same size as the input.
243
+
244
+ Parameters:
245
+ prediction (tensor) - - tpyically the prediction from a discriminator
246
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
247
+
248
+ Returns:
249
+ A label tensor filled with ground truth label, and with the size of the input
250
+ """
251
+
252
+ if target_is_real:
253
+ target_tensor = self.real_label
254
+ else:
255
+ target_tensor = self.fake_label
256
+ return target_tensor.expand_as(prediction)
257
+
258
+ def __call__(self, prediction, target_is_real):
259
+ """Calculate loss given Discriminator's output and grount truth labels.
260
+
261
+ Parameters:
262
+ prediction (tensor) - - tpyically the prediction output from a discriminator
263
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
264
+
265
+ Returns:
266
+ the calculated loss.
267
+ """
268
+ if self.gan_mode in ['lsgan', 'vanilla']:
269
+ target_tensor = self.get_target_tensor(prediction, target_is_real)
270
+ loss = self.loss(prediction, target_tensor)
271
+ elif self.gan_mode == 'wgangp':
272
+ if target_is_real:
273
+ loss = -prediction.mean()
274
+ else:
275
+ loss = prediction.mean()
276
+ return loss
277
+
278
+
279
+ def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
280
+ """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
281
+
282
+ Arguments:
283
+ netD (network) -- discriminator network
284
+ real_data (tensor array) -- real images
285
+ fake_data (tensor array) -- generated images from the generator
286
+ device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
287
+ type (str) -- if we mix real and fake data or not [real | fake | mixed].
288
+ constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
289
+ lambda_gp (float) -- weight for this loss
290
+
291
+ Returns the gradient penalty loss
292
+ """
293
+ if lambda_gp > 0.0:
294
+ if type == 'real': # either use real images, fake images, or a linear interpolation of two.
295
+ interpolatesv = real_data
296
+ elif type == 'fake':
297
+ interpolatesv = fake_data
298
+ elif type == 'mixed':
299
+ alpha = torch.rand(real_data.shape[0], 1, device=device)
300
+ alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
301
+ interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
302
+ else:
303
+ raise NotImplementedError('{} not implemented'.format(type))
304
+ interpolatesv.requires_grad_(True)
305
+ disc_interpolates = netD(interpolatesv)
306
+ gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
307
+ grad_outputs=torch.ones(disc_interpolates.size()).to(device),
308
+ create_graph=True, retain_graph=True, only_inputs=True)
309
+ gradients = gradients[0].view(real_data.size(0), -1) # flat the data
310
+ gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
311
+ return gradient_penalty, gradients
312
+ else:
313
+ return 0.0, None
314
+
315
+
316
+ class ResnetGenerator(nn.Module):
317
+ """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
318
+
319
+ We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
320
+ """
321
+
322
+ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
323
+ """Construct a Resnet-based generator
324
+
325
+ Parameters:
326
+ input_nc (int) -- the number of channels in input images
327
+ output_nc (int) -- the number of channels in output images
328
+ ngf (int) -- the number of filters in the last conv layer
329
+ norm_layer -- normalization layer
330
+ use_dropout (bool) -- if use dropout layers
331
+ n_blocks (int) -- the number of ResNet blocks
332
+ padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
333
+ """
334
+ assert(n_blocks >= 0)
335
+ super(ResnetGenerator, self).__init__()
336
+ if type(norm_layer) == functools.partial:
337
+ use_bias = norm_layer.func == nn.InstanceNorm2d
338
+ else:
339
+ use_bias = norm_layer == nn.InstanceNorm2d
340
+
341
+ model = [nn.ReflectionPad2d(3),
342
+ nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
343
+ norm_layer(ngf),
344
+ nn.ReLU(True)]
345
+
346
+ n_downsampling = 2
347
+ for i in range(n_downsampling): # add downsampling layers
348
+ mult = 2 ** i
349
+ model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
350
+ norm_layer(ngf * mult * 2),
351
+ nn.ReLU(True)]
352
+
353
+ mult = 2 ** n_downsampling
354
+ for i in range(n_blocks): # add ResNet blocks
355
+
356
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
357
+
358
+ for i in range(n_downsampling): # add upsampling layers
359
+ mult = 2 ** (n_downsampling - i)
360
+ model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
361
+ kernel_size=3, stride=2,
362
+ padding=1, output_padding=1,
363
+ bias=use_bias),
364
+ norm_layer(int(ngf * mult / 2)),
365
+ nn.ReLU(True)]
366
+ model += [nn.ReflectionPad2d(3)]
367
+ model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
368
+ model += [nn.Tanh()]
369
+
370
+ self.model = nn.Sequential(*model)
371
+
372
+ def forward(self, input):
373
+ """Standard forward"""
374
+ return self.model(input)
375
+
376
+
377
+ class ResnetBlock(nn.Module):
378
+ """Define a Resnet block"""
379
+
380
+ def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
381
+ """Initialize the Resnet block
382
+
383
+ A resnet block is a conv block with skip connections
384
+ We construct a conv block with build_conv_block function,
385
+ and implement skip connections in <forward> function.
386
+ Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
387
+ """
388
+ super(ResnetBlock, self).__init__()
389
+ self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
390
+
391
+ def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
392
+ """Construct a convolutional block.
393
+
394
+ Parameters:
395
+ dim (int) -- the number of channels in the conv layer.
396
+ padding_type (str) -- the name of padding layer: reflect | replicate | zero
397
+ norm_layer -- normalization layer
398
+ use_dropout (bool) -- if use dropout layers.
399
+ use_bias (bool) -- if the conv layer uses bias or not
400
+
401
+ Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
402
+ """
403
+ conv_block = []
404
+ p = 0
405
+ if padding_type == 'reflect':
406
+ conv_block += [nn.ReflectionPad2d(1)]
407
+ elif padding_type == 'replicate':
408
+ conv_block += [nn.ReplicationPad2d(1)]
409
+ elif padding_type == 'zero':
410
+ p = 1
411
+ else:
412
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
413
+
414
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
415
+ if use_dropout:
416
+ conv_block += [nn.Dropout(0.5)]
417
+
418
+ p = 0
419
+ if padding_type == 'reflect':
420
+ conv_block += [nn.ReflectionPad2d(1)]
421
+ elif padding_type == 'replicate':
422
+ conv_block += [nn.ReplicationPad2d(1)]
423
+ elif padding_type == 'zero':
424
+ p = 1
425
+ else:
426
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
427
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
428
+
429
+ return nn.Sequential(*conv_block)
430
+
431
+ def forward(self, x):
432
+ """Forward function (with skip connections)"""
433
+ out = x + self.conv_block(x) # add skip connections
434
+ return out
435
+
436
+
437
+ class UnetGenerator(nn.Module):
438
+ """Create a Unet-based generator"""
439
+
440
+ def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
441
+ """Construct a Unet generator
442
+ Parameters:
443
+ input_nc (int) -- the number of channels in input images
444
+ output_nc (int) -- the number of channels in output images
445
+ num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
446
+ image of size 128x128 will become of size 1x1 # at the bottleneck
447
+ ngf (int) -- the number of filters in the last conv layer
448
+ norm_layer -- normalization layer
449
+
450
+ We construct the U-Net from the innermost layer to the outermost layer.
451
+ It is a recursive process.
452
+ """
453
+ super(UnetGenerator, self).__init__()
454
+ # construct unet structure
455
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
456
+ for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
457
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
458
+ # gradually reduce the number of filters from ngf * 8 to ngf
459
+ unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
460
+ unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
461
+ unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
462
+ self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
463
+
464
+ def forward(self, input):
465
+ """Standard forward"""
466
+ return self.model(input)
467
+
468
+
469
+ class UnetSkipConnectionBlock(nn.Module):
470
+ """Defines the Unet submodule with skip connection.
471
+ X -------------------identity----------------------
472
+ |-- downsampling -- |submodule| -- upsampling --|
473
+ """
474
+
475
+ def __init__(self, outer_nc, inner_nc, input_nc=None,
476
+ submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
477
+ """Construct a Unet submodule with skip connections.
478
+
479
+ Parameters:
480
+ outer_nc (int) -- the number of filters in the outer conv layer
481
+ inner_nc (int) -- the number of filters in the inner conv layer
482
+ input_nc (int) -- the number of channels in input images/features
483
+ submodule (UnetSkipConnectionBlock) -- previously defined submodules
484
+ outermost (bool) -- if this module is the outermost module
485
+ innermost (bool) -- if this module is the innermost module
486
+ norm_layer -- normalization layer
487
+ use_dropout (bool) -- if use dropout layers.
488
+ """
489
+ super(UnetSkipConnectionBlock, self).__init__()
490
+ self.outermost = outermost
491
+ if type(norm_layer) == functools.partial:
492
+ use_bias = norm_layer.func == nn.InstanceNorm2d
493
+ else:
494
+ use_bias = norm_layer == nn.InstanceNorm2d
495
+ if input_nc is None:
496
+ input_nc = outer_nc
497
+ downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
498
+ stride=2, padding=1, bias=use_bias)
499
+ downrelu = nn.LeakyReLU(0.2, True)
500
+ downnorm = norm_layer(inner_nc)
501
+ uprelu = nn.ReLU(True)
502
+ upnorm = norm_layer(outer_nc)
503
+
504
+ if outermost:
505
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
506
+ kernel_size=4, stride=2,
507
+ padding=1)
508
+ down = [downconv]
509
+ up = [uprelu, upconv, nn.Tanh()]
510
+ model = down + [submodule] + up
511
+ elif innermost:
512
+ upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
513
+ kernel_size=4, stride=2,
514
+ padding=1, bias=use_bias)
515
+ down = [downrelu, downconv]
516
+ up = [uprelu, upconv, upnorm]
517
+ model = down + up
518
+ else:
519
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
520
+ kernel_size=4, stride=2,
521
+ padding=1, bias=use_bias)
522
+ down = [downrelu, downconv, downnorm]
523
+ up = [uprelu, upconv, upnorm]
524
+
525
+ if use_dropout:
526
+ model = down + [submodule] + up + [nn.Dropout(0.5)]
527
+ else:
528
+ model = down + [submodule] + up
529
+
530
+ self.model = nn.Sequential(*model)
531
+
532
+ def forward(self, x):
533
+ if self.outermost:
534
+ return self.model(x)
535
+ else: # add skip connections
536
+ return torch.cat([x, self.model(x)], 1)
537
+
538
+
539
+ class NLayerDiscriminator(nn.Module):
540
+ """Defines a PatchGAN discriminator"""
541
+
542
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
543
+ """Construct a PatchGAN discriminator
544
+
545
+ Parameters:
546
+ input_nc (int) -- the number of channels in input images
547
+ ndf (int) -- the number of filters in the last conv layer
548
+ n_layers (int) -- the number of conv layers in the discriminator
549
+ norm_layer -- normalization layer
550
+ """
551
+ super(NLayerDiscriminator, self).__init__()
552
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
553
+ use_bias = norm_layer.func == nn.InstanceNorm2d
554
+ else:
555
+ use_bias = norm_layer == nn.InstanceNorm2d
556
+
557
+ kw = 4
558
+ padw = 1
559
+ sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
560
+ nf_mult = 1
561
+ nf_mult_prev = 1
562
+ for n in range(1, n_layers): # gradually increase the number of filters
563
+ nf_mult_prev = nf_mult
564
+ nf_mult = min(2 ** n, 8)
565
+ sequence += [
566
+ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
567
+ norm_layer(ndf * nf_mult),
568
+ nn.LeakyReLU(0.2, True)
569
+ ]
570
+
571
+ nf_mult_prev = nf_mult
572
+ nf_mult = min(2 ** n_layers, 8)
573
+ sequence += [
574
+ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
575
+ norm_layer(ndf * nf_mult),
576
+ nn.LeakyReLU(0.2, True)
577
+ ]
578
+
579
+ sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
580
+ self.model = nn.Sequential(*sequence)
581
+
582
+ def forward(self, input):
583
+ """Standard forward."""
584
+ return self.model(input)
585
+
586
+
587
+ class PixelDiscriminator(nn.Module):
588
+ """Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
589
+
590
+ def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
591
+ """Construct a 1x1 PatchGAN discriminator
592
+
593
+ Parameters:
594
+ input_nc (int) -- the number of channels in input images
595
+ ndf (int) -- the number of filters in the last conv layer
596
+ norm_layer -- normalization layer
597
+ """
598
+ super(PixelDiscriminator, self).__init__()
599
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
600
+ use_bias = norm_layer.func == nn.InstanceNorm2d
601
+ else:
602
+ use_bias = norm_layer == nn.InstanceNorm2d
603
+
604
+ self.net = [
605
+ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
606
+ nn.LeakyReLU(0.2, True),
607
+ nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
608
+ norm_layer(ndf * 2),
609
+ nn.LeakyReLU(0.2, True),
610
+ nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
611
+
612
+ self.net = nn.Sequential(*self.net)
613
+
614
+ def forward(self, input):
615
+ """Standard forward."""
616
+ return self.net(input)
models/pix2pix_model.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .base_model import BaseModel
3
+ from . import networks
4
+
5
+
6
+ class Pix2PixModel(BaseModel):
7
+ """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data.
8
+
9
+ The model training requires '--dataset_mode aligned' dataset.
10
+ By default, it uses a '--netG unet256' U-Net generator,
11
+ a '--netD basic' discriminator (PatchGAN),
12
+ and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper).
13
+
14
+ pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf
15
+ """
16
+ @staticmethod
17
+ def modify_commandline_options(parser, is_train=True):
18
+ """Add new dataset-specific options, and rewrite default values for existing options.
19
+
20
+ Parameters:
21
+ parser -- original option parser
22
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
23
+
24
+ Returns:
25
+ the modified parser.
26
+
27
+ For pix2pix, we do not use image buffer
28
+ The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1
29
+ By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets.
30
+ """
31
+ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/)
32
+ parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned')
33
+ if is_train:
34
+ parser.set_defaults(pool_size=0, gan_mode='vanilla')
35
+ parser.add_argument('--lambda_L1', type=float, default=100.0, help='weight for L1 loss')
36
+
37
+ return parser
38
+
39
+ def __init__(self, opt):
40
+ """Initialize the pix2pix class.
41
+
42
+ Parameters:
43
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
44
+ """
45
+ BaseModel.__init__(self, opt)
46
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
47
+ self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake']
48
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
49
+ self.visual_names = ['real_A', 'fake_B', 'real_B']
50
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
51
+ if self.isTrain:
52
+ self.model_names = ['G', 'D']
53
+ else: # during test time, only load G
54
+ self.model_names = ['G']
55
+ # define networks (both generator and discriminator)
56
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
57
+ not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
58
+
59
+ if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
60
+ self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
61
+ opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
62
+
63
+ if self.isTrain:
64
+ # define loss functions
65
+ self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
66
+ self.criterionL1 = torch.nn.L1Loss()
67
+ # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
68
+ self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
69
+ self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
70
+ self.optimizers.append(self.optimizer_G)
71
+ self.optimizers.append(self.optimizer_D)
72
+
73
+ def set_input(self, input):
74
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
75
+
76
+ Parameters:
77
+ input (dict): include the data itself and its metadata information.
78
+
79
+ The option 'direction' can be used to swap images in domain A and domain B.
80
+ """
81
+ AtoB = self.opt.direction == 'AtoB'
82
+ self.real_A = input['A' if AtoB else 'B'].to(self.device)
83
+ self.real_B = input['B' if AtoB else 'A'].to(self.device)
84
+ self.image_paths = input['A_paths' if AtoB else 'B_paths']
85
+
86
+ def forward(self):
87
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
88
+ self.fake_B = self.netG(self.real_A) # G(A)
89
+
90
+ def backward_D(self):
91
+ """Calculate GAN loss for the discriminator"""
92
+ # Fake; stop backprop to the generator by detaching fake_B
93
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator
94
+ pred_fake = self.netD(fake_AB.detach())
95
+ self.loss_D_fake = self.criterionGAN(pred_fake, False)
96
+ # Real
97
+ real_AB = torch.cat((self.real_A, self.real_B), 1)
98
+ pred_real = self.netD(real_AB)
99
+ self.loss_D_real = self.criterionGAN(pred_real, True)
100
+ # combine loss and calculate gradients
101
+ self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
102
+ self.loss_D.backward()
103
+
104
+ def backward_G(self):
105
+ """Calculate GAN and L1 loss for the generator"""
106
+ # First, G(A) should fake the discriminator
107
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1)
108
+ pred_fake = self.netD(fake_AB)
109
+ self.loss_G_GAN = self.criterionGAN(pred_fake, True)
110
+ # Second, G(A) = B
111
+ self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
112
+ # combine loss and calculate gradients
113
+ self.loss_G = self.loss_G_GAN + self.loss_G_L1
114
+ self.loss_G.backward()
115
+
116
+ def optimize_parameters(self):
117
+ self.forward() # compute fake images: G(A)
118
+ # update D
119
+ self.set_requires_grad(self.netD, True) # enable backprop for D
120
+ self.optimizer_D.zero_grad() # set D's gradients to zero
121
+ self.backward_D() # calculate gradients for D
122
+ self.optimizer_D.step() # update D's weights
123
+ # update G
124
+ self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G
125
+ self.optimizer_G.zero_grad() # set G's gradients to zero
126
+ self.backward_G() # calculate graidents for G
127
+ self.optimizer_G.step() # update G's weights
models/template_model.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Model class template
2
+
3
+ This module provides a template for users to implement custom models.
4
+ You can specify '--model template' to use this model.
5
+ The class name should be consistent with both the filename and its model option.
6
+ The filename should be <model>_dataset.py
7
+ The class name should be <Model>Dataset.py
8
+ It implements a simple image-to-image translation baseline based on regression loss.
9
+ Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss:
10
+ min_<netG> ||netG(data_A) - data_B||_1
11
+ You need to implement the following functions:
12
+ <modify_commandline_options>: Add model-specific options and rewrite default values for existing options.
13
+ <__init__>: Initialize this model class.
14
+ <set_input>: Unpack input data and perform data pre-processing.
15
+ <forward>: Run forward pass. This will be called by both <optimize_parameters> and <test>.
16
+ <optimize_parameters>: Update network weights; it will be called in every training iteration.
17
+ """
18
+ import torch
19
+ from .base_model import BaseModel
20
+ from . import networks
21
+
22
+
23
+ class TemplateModel(BaseModel):
24
+ @staticmethod
25
+ def modify_commandline_options(parser, is_train=True):
26
+ """Add new model-specific options and rewrite default values for existing options.
27
+
28
+ Parameters:
29
+ parser -- the option parser
30
+ is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options.
31
+
32
+ Returns:
33
+ the modified parser.
34
+ """
35
+ parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset.
36
+ if is_train:
37
+ parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model.
38
+
39
+ return parser
40
+
41
+ def __init__(self, opt):
42
+ """Initialize this model class.
43
+
44
+ Parameters:
45
+ opt -- training/test options
46
+
47
+ A few things can be done here.
48
+ - (required) call the initialization function of BaseModel
49
+ - define loss function, visualization images, model names, and optimizers
50
+ """
51
+ BaseModel.__init__(self, opt) # call the initialization method of BaseModel
52
+ # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk.
53
+ self.loss_names = ['loss_G']
54
+ # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images.
55
+ self.visual_names = ['data_A', 'data_B', 'output']
56
+ # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks.
57
+ # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them.
58
+ self.model_names = ['G']
59
+ # define networks; you can use opt.isTrain to specify different behaviors for training and test.
60
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids)
61
+ if self.isTrain: # only defined during training time
62
+ # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss.
63
+ # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device)
64
+ self.criterionLoss = torch.nn.L1Loss()
65
+ # define and initialize optimizers. You can define one optimizer for each network.
66
+ # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
67
+ self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
68
+ self.optimizers = [self.optimizer]
69
+
70
+ # Our program will automatically call <model.setup> to define schedulers, load networks, and print networks
71
+
72
+ def set_input(self, input):
73
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
74
+
75
+ Parameters:
76
+ input: a dictionary that contains the data itself and its metadata information.
77
+ """
78
+ AtoB = self.opt.direction == 'AtoB' # use <direction> to swap data_A and data_B
79
+ self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A
80
+ self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B
81
+ self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths
82
+
83
+ def forward(self):
84
+ """Run forward pass. This will be called by both functions <optimize_parameters> and <test>."""
85
+ self.output = self.netG(self.data_A) # generate output image given the input data_A
86
+
87
+ def backward(self):
88
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
89
+ # caculate the intermediate results if necessary; here self.output has been computed during function <forward>
90
+ # calculate loss given the input and intermediate results
91
+ self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression
92
+ self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G
93
+
94
+ def optimize_parameters(self):
95
+ """Update network weights; it will be called in every training iteration."""
96
+ self.forward() # first call forward to calculate intermediate results
97
+ self.optimizer.zero_grad() # clear network G's existing gradients
98
+ self.backward() # calculate gradients for network G
99
+ self.optimizer.step() # update gradients for network G
models/test_model.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_model import BaseModel
2
+ from . import networks
3
+
4
+
5
+ class TestModel(BaseModel):
6
+ """ This TesteModel can be used to generate CycleGAN results for only one direction.
7
+ This model will automatically set '--dataset_mode single', which only loads the images from one collection.
8
+
9
+ See the test instruction for more details.
10
+ """
11
+ @staticmethod
12
+ def modify_commandline_options(parser, is_train=True):
13
+ """Add new dataset-specific options, and rewrite default values for existing options.
14
+
15
+ Parameters:
16
+ parser -- original option parser
17
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
18
+
19
+ Returns:
20
+ the modified parser.
21
+
22
+ The model can only be used during test time. It requires '--dataset_mode single'.
23
+ You need to specify the network using the option '--model_suffix'.
24
+ """
25
+ assert not is_train, 'TestModel cannot be used during training time'
26
+ parser.set_defaults(dataset_mode='single')
27
+ parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.')
28
+
29
+ return parser
30
+
31
+ def __init__(self, opt):
32
+ """Initialize the pix2pix class.
33
+
34
+ Parameters:
35
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
36
+ """
37
+ assert(not opt.isTrain)
38
+ BaseModel.__init__(self, opt)
39
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
40
+ self.loss_names = []
41
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
42
+ self.visual_names = ['real', 'fake']
43
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
44
+ self.model_names = ['G' + opt.model_suffix] # only generator is needed.
45
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG,
46
+ opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
47
+
48
+ # assigns the model to self.netG_[suffix] so that it can be loaded
49
+ # please see <BaseModel.load_networks>
50
+ setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self.
51
+
52
+ def set_input(self, input):
53
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
54
+
55
+ Parameters:
56
+ input: a dictionary that contains the data itself and its metadata information.
57
+
58
+ We need to use 'single_dataset' dataset mode. It only load images from one domain.
59
+ """
60
+ self.real = input['A'].to(self.device)
61
+ self.image_paths = input['A_paths']
62
+
63
+ def forward(self):
64
+ """Run forward pass."""
65
+ self.fake = self.netG(self.real) # G(real)
66
+
67
+ def optimize_parameters(self):
68
+ """No optimization for test model."""
69
+ pass
options/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
options/base_options.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ from util import util
4
+ import torch
5
+ import models
6
+ import data
7
+
8
+
9
+ class BaseOptions():
10
+ """This class defines options used during both training and test time.
11
+
12
+ It also implements several helper functions such as parsing, printing, and saving the options.
13
+ It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
14
+ """
15
+
16
+ def __init__(self):
17
+ """Reset the class; indicates the class hasn't been initailized"""
18
+ self.initialized = False
19
+
20
+ def initialize(self, parser):
21
+ """Define the common options that are used in both training and test."""
22
+ # basic parameters
23
+ parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
24
+ parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models')
25
+ parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
26
+ parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
27
+ # model parameters
28
+ parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
29
+ parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale')
30
+ parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale')
31
+ parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
32
+ parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
33
+ parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
34
+ parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
35
+ parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
36
+ parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]')
37
+ parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]')
38
+ parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
39
+ parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
40
+ # dataset parameters
41
+ parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]')
42
+ parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA')
43
+ parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
44
+ parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
45
+ parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
46
+ parser.add_argument('--load_size', type=int, default=286, help='scale images to this size')
47
+ parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size')
48
+ parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
49
+ parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
50
+ parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
51
+ parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
52
+ # additional parameters
53
+ parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
54
+ parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
55
+ parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
56
+ parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
57
+ # wandb parameters
58
+ parser.add_argument('--use_wandb', action='store_true', help='if specified, then init wandb logging')
59
+ parser.add_argument('--wandb_project_name', type=str, default='CycleGAN-and-pix2pix', help='specify wandb project name')
60
+ self.initialized = True
61
+ return parser
62
+
63
+ def gather_options(self):
64
+ """Initialize our parser with basic options(only once).
65
+ Add additional model-specific and dataset-specific options.
66
+ These options are defined in the <modify_commandline_options> function
67
+ in model and dataset classes.
68
+ """
69
+ if not self.initialized: # check if it has been initialized
70
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
71
+ parser = self.initialize(parser)
72
+
73
+ # get the basic options
74
+ opt, _ = parser.parse_known_args()
75
+
76
+ # modify model-related parser options
77
+ model_name = opt.model
78
+ model_option_setter = models.get_option_setter(model_name)
79
+ parser = model_option_setter(parser, self.isTrain)
80
+ opt, _ = parser.parse_known_args() # parse again with new defaults
81
+
82
+ # modify dataset-related parser options
83
+ dataset_name = opt.dataset_mode
84
+ dataset_option_setter = data.get_option_setter(dataset_name)
85
+ parser = dataset_option_setter(parser, self.isTrain)
86
+
87
+ # save and return the parser
88
+ self.parser = parser
89
+ return parser.parse_args()
90
+
91
+ def print_options(self, opt):
92
+ """Print and save options
93
+
94
+ It will print both current options and default values(if different).
95
+ It will save options into a text file / [checkpoints_dir] / opt.txt
96
+ """
97
+ message = ''
98
+ message += '----------------- Options ---------------\n'
99
+ for k, v in sorted(vars(opt).items()):
100
+ comment = ''
101
+ default = self.parser.get_default(k)
102
+ if v != default:
103
+ comment = '\t[default: %s]' % str(default)
104
+ message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
105
+ message += '----------------- End -------------------'
106
+ print(message)
107
+
108
+ # save to the disk
109
+ expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
110
+ util.mkdirs(expr_dir)
111
+ file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
112
+ with open(file_name, 'wt') as opt_file:
113
+ opt_file.write(message)
114
+ opt_file.write('\n')
115
+
116
+ def parse(self):
117
+ """Parse our options, create checkpoints directory suffix, and set up gpu device."""
118
+ opt = self.gather_options()
119
+ opt.isTrain = self.isTrain # train or test
120
+
121
+ # process opt.suffix
122
+ if opt.suffix:
123
+ suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
124
+ opt.name = opt.name + suffix
125
+
126
+ self.print_options(opt)
127
+
128
+ # set gpu ids
129
+ str_ids = opt.gpu_ids.split(',')
130
+ opt.gpu_ids = []
131
+ for str_id in str_ids:
132
+ id = int(str_id)
133
+ if id >= 0:
134
+ opt.gpu_ids.append(id)
135
+ if len(opt.gpu_ids) > 0:
136
+ torch.cuda.set_device(opt.gpu_ids[0])
137
+
138
+ self.opt = opt
139
+ return self.opt
options/test_options.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_options import BaseOptions
2
+
3
+
4
+ class TestOptions(BaseOptions):
5
+ """This class includes test options.
6
+
7
+ It also includes shared options defined in BaseOptions.
8
+ """
9
+
10
+ def initialize(self, parser):
11
+ parser = BaseOptions.initialize(self, parser) # define shared options
12
+ parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.')
13
+ parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images')
14
+ parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
15
+ # Dropout and Batchnorm has different behavioir during training and test.
16
+ parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
17
+ parser.add_argument('--num_test', type=int, default=50, help='how many test images to run')
18
+ # rewrite devalue values
19
+ parser.set_defaults(model='test')
20
+ # To avoid cropping, the load_size should be the same as crop_size
21
+ parser.set_defaults(load_size=parser.get_default('crop_size'))
22
+ self.isTrain = False
23
+ return parser
options/train_options.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_options import BaseOptions
2
+
3
+
4
+ class TrainOptions(BaseOptions):
5
+ """This class includes training options.
6
+
7
+ It also includes shared options defined in BaseOptions.
8
+ """
9
+
10
+ def initialize(self, parser):
11
+ parser = BaseOptions.initialize(self, parser)
12
+ # visdom and HTML visualization parameters
13
+ parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen')
14
+ parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.')
15
+ parser.add_argument('--display_id', type=int, default=1, help='window id of the web display')
16
+ parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display')
17
+ parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")')
18
+ parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
19
+ parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html')
20
+ parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
21
+ parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
22
+ # network saving and loading parameters
23
+ parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results')
24
+ parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs')
25
+ parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration')
26
+ parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model')
27
+ parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...')
28
+ parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
29
+ # training parameters
30
+ parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate')
31
+ parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero')
32
+ parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
33
+ parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
34
+ parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
35
+ parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images')
36
+ parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]')
37
+ parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations')
38
+
39
+ self.isTrain = True
40
+ return parser
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch==2.0.0
2
+ torchvision==0.15.1
3
+ gradio
4
+ pillow
5
+ huggingface_hub
6
+ numpy==1.26.2
util/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package includes a miscellaneous collection of useful helper functions."""
util/get_data.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import tarfile
4
+ import requests
5
+ from warnings import warn
6
+ from zipfile import ZipFile
7
+ from bs4 import BeautifulSoup
8
+ from os.path import abspath, isdir, join, basename
9
+
10
+
11
+ class GetData(object):
12
+ """A Python script for downloading CycleGAN or pix2pix datasets.
13
+
14
+ Parameters:
15
+ technique (str) -- One of: 'cyclegan' or 'pix2pix'.
16
+ verbose (bool) -- If True, print additional information.
17
+
18
+ Examples:
19
+ >>> from util.get_data import GetData
20
+ >>> gd = GetData(technique='cyclegan')
21
+ >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed.
22
+
23
+ Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh'
24
+ and 'scripts/download_cyclegan_model.sh'.
25
+ """
26
+
27
+ def __init__(self, technique='cyclegan', verbose=True):
28
+ url_dict = {
29
+ 'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/',
30
+ 'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets'
31
+ }
32
+ self.url = url_dict.get(technique.lower())
33
+ self._verbose = verbose
34
+
35
+ def _print(self, text):
36
+ if self._verbose:
37
+ print(text)
38
+
39
+ @staticmethod
40
+ def _get_options(r):
41
+ soup = BeautifulSoup(r.text, 'lxml')
42
+ options = [h.text for h in soup.find_all('a', href=True)
43
+ if h.text.endswith(('.zip', 'tar.gz'))]
44
+ return options
45
+
46
+ def _present_options(self):
47
+ r = requests.get(self.url)
48
+ options = self._get_options(r)
49
+ print('Options:\n')
50
+ for i, o in enumerate(options):
51
+ print("{0}: {1}".format(i, o))
52
+ choice = input("\nPlease enter the number of the "
53
+ "dataset above you wish to download:")
54
+ return options[int(choice)]
55
+
56
+ def _download_data(self, dataset_url, save_path):
57
+ if not isdir(save_path):
58
+ os.makedirs(save_path)
59
+
60
+ base = basename(dataset_url)
61
+ temp_save_path = join(save_path, base)
62
+
63
+ with open(temp_save_path, "wb") as f:
64
+ r = requests.get(dataset_url)
65
+ f.write(r.content)
66
+
67
+ if base.endswith('.tar.gz'):
68
+ obj = tarfile.open(temp_save_path)
69
+ elif base.endswith('.zip'):
70
+ obj = ZipFile(temp_save_path, 'r')
71
+ else:
72
+ raise ValueError("Unknown File Type: {0}.".format(base))
73
+
74
+ self._print("Unpacking Data...")
75
+ obj.extractall(save_path)
76
+ obj.close()
77
+ os.remove(temp_save_path)
78
+
79
+ def get(self, save_path, dataset=None):
80
+ """
81
+
82
+ Download a dataset.
83
+
84
+ Parameters:
85
+ save_path (str) -- A directory to save the data to.
86
+ dataset (str) -- (optional). A specific dataset to download.
87
+ Note: this must include the file extension.
88
+ If None, options will be presented for you
89
+ to choose from.
90
+
91
+ Returns:
92
+ save_path_full (str) -- the absolute path to the downloaded data.
93
+
94
+ """
95
+ if dataset is None:
96
+ selected_dataset = self._present_options()
97
+ else:
98
+ selected_dataset = dataset
99
+
100
+ save_path_full = join(save_path, selected_dataset.split('.')[0])
101
+
102
+ if isdir(save_path_full):
103
+ warn("\n'{0}' already exists. Voiding Download.".format(
104
+ save_path_full))
105
+ else:
106
+ self._print('Downloading Data...')
107
+ url = "{0}/{1}".format(self.url, selected_dataset)
108
+ self._download_data(url, save_path=save_path)
109
+
110
+ return abspath(save_path_full)
util/html.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dominate
2
+ from dominate.tags import meta, h3, table, tr, td, p, a, img, br
3
+ import os
4
+
5
+
6
+ class HTML:
7
+ """This HTML class allows us to save images and write texts into a single HTML file.
8
+
9
+ It consists of functions such as <add_header> (add a text header to the HTML file),
10
+ <add_images> (add a row of images to the HTML file), and <save> (save the HTML to the disk).
11
+ It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API.
12
+ """
13
+
14
+ def __init__(self, web_dir, title, refresh=0):
15
+ """Initialize the HTML classes
16
+
17
+ Parameters:
18
+ web_dir (str) -- a directory that stores the webpage. HTML file will be created at <web_dir>/index.html; images will be saved at <web_dir/images/
19
+ title (str) -- the webpage name
20
+ refresh (int) -- how often the website refresh itself; if 0; no refreshing
21
+ """
22
+ self.title = title
23
+ self.web_dir = web_dir
24
+ self.img_dir = os.path.join(self.web_dir, 'images')
25
+ if not os.path.exists(self.web_dir):
26
+ os.makedirs(self.web_dir)
27
+ if not os.path.exists(self.img_dir):
28
+ os.makedirs(self.img_dir)
29
+
30
+ self.doc = dominate.document(title=title)
31
+ if refresh > 0:
32
+ with self.doc.head:
33
+ meta(http_equiv="refresh", content=str(refresh))
34
+
35
+ def get_image_dir(self):
36
+ """Return the directory that stores images"""
37
+ return self.img_dir
38
+
39
+ def add_header(self, text):
40
+ """Insert a header to the HTML file
41
+
42
+ Parameters:
43
+ text (str) -- the header text
44
+ """
45
+ with self.doc:
46
+ h3(text)
47
+
48
+ def add_images(self, ims, txts, links, width=400):
49
+ """add images to the HTML file
50
+
51
+ Parameters:
52
+ ims (str list) -- a list of image paths
53
+ txts (str list) -- a list of image names shown on the website
54
+ links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page
55
+ """
56
+ self.t = table(border=1, style="table-layout: fixed;") # Insert a table
57
+ self.doc.add(self.t)
58
+ with self.t:
59
+ with tr():
60
+ for im, txt, link in zip(ims, txts, links):
61
+ with td(style="word-wrap: break-word;", halign="center", valign="top"):
62
+ with p():
63
+ with a(href=os.path.join('images', link)):
64
+ img(style="width:%dpx" % width, src=os.path.join('images', im))
65
+ br()
66
+ p(txt)
67
+
68
+ def save(self):
69
+ """save the current content to the HMTL file"""
70
+ html_file = '%s/index.html' % self.web_dir
71
+ f = open(html_file, 'wt')
72
+ f.write(self.doc.render())
73
+ f.close()
74
+
75
+
76
+ if __name__ == '__main__': # we show an example usage here.
77
+ html = HTML('web/', 'test_html')
78
+ html.add_header('hello world')
79
+
80
+ ims, txts, links = [], [], []
81
+ for n in range(4):
82
+ ims.append('image_%d.png' % n)
83
+ txts.append('text_%d' % n)
84
+ links.append('image_%d.png' % n)
85
+ html.add_images(ims, txts, links)
86
+ html.save()
util/image_pool.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+
4
+
5
+ class ImagePool():
6
+ """This class implements an image buffer that stores previously generated images.
7
+
8
+ This buffer enables us to update discriminators using a history of generated images
9
+ rather than the ones produced by the latest generators.
10
+ """
11
+
12
+ def __init__(self, pool_size):
13
+ """Initialize the ImagePool class
14
+
15
+ Parameters:
16
+ pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created
17
+ """
18
+ self.pool_size = pool_size
19
+ if self.pool_size > 0: # create an empty pool
20
+ self.num_imgs = 0
21
+ self.images = []
22
+
23
+ def query(self, images):
24
+ """Return an image from the pool.
25
+
26
+ Parameters:
27
+ images: the latest generated images from the generator
28
+
29
+ Returns images from the buffer.
30
+
31
+ By 50/100, the buffer will return input images.
32
+ By 50/100, the buffer will return images previously stored in the buffer,
33
+ and insert the current images to the buffer.
34
+ """
35
+ if self.pool_size == 0: # if the buffer size is 0, do nothing
36
+ return images
37
+ return_images = []
38
+ for image in images:
39
+ image = torch.unsqueeze(image.data, 0)
40
+ if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer
41
+ self.num_imgs = self.num_imgs + 1
42
+ self.images.append(image)
43
+ return_images.append(image)
44
+ else:
45
+ p = random.uniform(0, 1)
46
+ if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer
47
+ random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
48
+ tmp = self.images[random_id].clone()
49
+ self.images[random_id] = image
50
+ return_images.append(tmp)
51
+ else: # by another 50% chance, the buffer will return the current image
52
+ return_images.append(image)
53
+ return_images = torch.cat(return_images, 0) # collect all the images and return
54
+ return return_images
util/util.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module contains simple helper functions """
2
+ from __future__ import print_function
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image
6
+ import os
7
+
8
+
9
+ def tensor2im(input_image, imtype=np.uint8):
10
+ """"Converts a Tensor array into a numpy image array.
11
+
12
+ Parameters:
13
+ input_image (tensor) -- the input image tensor array
14
+ imtype (type) -- the desired type of the converted numpy array
15
+ """
16
+ if not isinstance(input_image, np.ndarray):
17
+ if isinstance(input_image, torch.Tensor): # get the data from a variable
18
+ image_tensor = input_image.data
19
+ else:
20
+ return input_image
21
+ image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array
22
+ if image_numpy.shape[0] == 1: # grayscale to RGB
23
+ image_numpy = np.tile(image_numpy, (3, 1, 1))
24
+ image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
25
+ else: # if it is a numpy array, do nothing
26
+ image_numpy = input_image
27
+ return image_numpy.astype(imtype)
28
+
29
+
30
+ def diagnose_network(net, name='network'):
31
+ """Calculate and print the mean of average absolute(gradients)
32
+
33
+ Parameters:
34
+ net (torch network) -- Torch network
35
+ name (str) -- the name of the network
36
+ """
37
+ mean = 0.0
38
+ count = 0
39
+ for param in net.parameters():
40
+ if param.grad is not None:
41
+ mean += torch.mean(torch.abs(param.grad.data))
42
+ count += 1
43
+ if count > 0:
44
+ mean = mean / count
45
+ print(name)
46
+ print(mean)
47
+
48
+
49
+ def save_image(image_numpy, image_path, aspect_ratio=1.0):
50
+ """Save a numpy image to the disk
51
+
52
+ Parameters:
53
+ image_numpy (numpy array) -- input numpy array
54
+ image_path (str) -- the path of the image
55
+ """
56
+
57
+ image_pil = Image.fromarray(image_numpy)
58
+ h, w, _ = image_numpy.shape
59
+
60
+ if aspect_ratio > 1.0:
61
+ image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
62
+ if aspect_ratio < 1.0:
63
+ image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
64
+ image_pil.save(image_path)
65
+
66
+
67
+ def print_numpy(x, val=True, shp=False):
68
+ """Print the mean, min, max, median, std, and size of a numpy array
69
+
70
+ Parameters:
71
+ val (bool) -- if print the values of the numpy array
72
+ shp (bool) -- if print the shape of the numpy array
73
+ """
74
+ x = x.astype(np.float64)
75
+ if shp:
76
+ print('shape,', x.shape)
77
+ if val:
78
+ x = x.flatten()
79
+ print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
80
+ np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
81
+
82
+
83
+ def mkdirs(paths):
84
+ """create empty directories if they don't exist
85
+
86
+ Parameters:
87
+ paths (str list) -- a list of directory paths
88
+ """
89
+ if isinstance(paths, list) and not isinstance(paths, str):
90
+ for path in paths:
91
+ mkdir(path)
92
+ else:
93
+ mkdir(paths)
94
+
95
+
96
+ def mkdir(path):
97
+ """create a single empty directory if it didn't exist
98
+
99
+ Parameters:
100
+ path (str) -- a single directory path
101
+ """
102
+ if not os.path.exists(path):
103
+ os.makedirs(path)
util/visualizer.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os
3
+ import sys
4
+ import ntpath
5
+ import time
6
+ from . import util, html
7
+ from subprocess import Popen, PIPE
8
+
9
+
10
+ try:
11
+ import wandb
12
+ except ImportError:
13
+ print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.')
14
+
15
+ if sys.version_info[0] == 2:
16
+ VisdomExceptionBase = Exception
17
+ else:
18
+ VisdomExceptionBase = ConnectionError
19
+
20
+
21
+ def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256, use_wandb=False):
22
+ """Save images to the disk.
23
+
24
+ Parameters:
25
+ webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
26
+ visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
27
+ image_path (str) -- the string is used to create image paths
28
+ aspect_ratio (float) -- the aspect ratio of saved images
29
+ width (int) -- the images will be resized to width x width
30
+
31
+ This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
32
+ """
33
+ image_dir = webpage.get_image_dir()
34
+ short_path = ntpath.basename(image_path[0])
35
+ name = os.path.splitext(short_path)[0]
36
+
37
+ webpage.add_header(name)
38
+ ims, txts, links = [], [], []
39
+ ims_dict = {}
40
+ for label, im_data in visuals.items():
41
+ im = util.tensor2im(im_data)
42
+ image_name = '%s_%s.png' % (name, label)
43
+ save_path = os.path.join(image_dir, image_name)
44
+ util.save_image(im, save_path, aspect_ratio=aspect_ratio)
45
+ ims.append(image_name)
46
+ txts.append(label)
47
+ links.append(image_name)
48
+ if use_wandb:
49
+ ims_dict[label] = wandb.Image(im)
50
+ webpage.add_images(ims, txts, links, width=width)
51
+ if use_wandb:
52
+ wandb.log(ims_dict)
53
+
54
+
55
+ class Visualizer():
56
+ """This class includes several functions that can display/save images and print/save logging information.
57
+
58
+ It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
59
+ """
60
+
61
+ def __init__(self, opt):
62
+ """Initialize the Visualizer class
63
+
64
+ Parameters:
65
+ opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
66
+ Step 1: Cache the training/test options
67
+ Step 2: connect to a visdom server
68
+ Step 3: create an HTML object for saveing HTML filters
69
+ Step 4: create a logging file to store training losses
70
+ """
71
+ self.opt = opt # cache the option
72
+ self.display_id = opt.display_id
73
+ self.use_html = opt.isTrain and not opt.no_html
74
+ self.win_size = opt.display_winsize
75
+ self.name = opt.name
76
+ self.port = opt.display_port
77
+ self.saved = False
78
+ self.use_wandb = opt.use_wandb
79
+ self.wandb_project_name = opt.wandb_project_name
80
+ self.current_epoch = 0
81
+ self.ncols = opt.display_ncols
82
+
83
+ if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server>
84
+ import visdom
85
+ self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env)
86
+ if not self.vis.check_connection():
87
+ self.create_visdom_connections()
88
+
89
+ if self.use_wandb:
90
+ self.wandb_run = wandb.init(project=self.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run
91
+ self.wandb_run._label(repo='CycleGAN-and-pix2pix')
92
+
93
+ if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
94
+ self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
95
+ self.img_dir = os.path.join(self.web_dir, 'images')
96
+ print('create web directory %s...' % self.web_dir)
97
+ util.mkdirs([self.web_dir, self.img_dir])
98
+ # create a logging file to store training losses
99
+ self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
100
+ with open(self.log_name, "a") as log_file:
101
+ now = time.strftime("%c")
102
+ log_file.write('================ Training Loss (%s) ================\n' % now)
103
+
104
+ def reset(self):
105
+ """Reset the self.saved status"""
106
+ self.saved = False
107
+
108
+ def create_visdom_connections(self):
109
+ """If the program could not connect to Visdom server, this function will start a new server at port < self.port > """
110
+ cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port
111
+ print('\n\nCould not connect to Visdom server. \n Trying to start a server....')
112
+ print('Command: %s' % cmd)
113
+ Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
114
+
115
+ def display_current_results(self, visuals, epoch, save_result):
116
+ """Display current results on visdom; save current results to an HTML file.
117
+
118
+ Parameters:
119
+ visuals (OrderedDict) - - dictionary of images to display or save
120
+ epoch (int) - - the current epoch
121
+ save_result (bool) - - if save the current results to an HTML file
122
+ """
123
+ if self.display_id > 0: # show images in the browser using visdom
124
+ ncols = self.ncols
125
+ if ncols > 0: # show all the images in one visdom panel
126
+ ncols = min(ncols, len(visuals))
127
+ h, w = next(iter(visuals.values())).shape[:2]
128
+ table_css = """<style>
129
+ table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center}
130
+ table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black}
131
+ </style>""" % (w, h) # create a table css
132
+ # create a table of images.
133
+ title = self.name
134
+ label_html = ''
135
+ label_html_row = ''
136
+ images = []
137
+ idx = 0
138
+ for label, image in visuals.items():
139
+ image_numpy = util.tensor2im(image)
140
+ label_html_row += '<td>%s</td>' % label
141
+ images.append(image_numpy.transpose([2, 0, 1]))
142
+ idx += 1
143
+ if idx % ncols == 0:
144
+ label_html += '<tr>%s</tr>' % label_html_row
145
+ label_html_row = ''
146
+ white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
147
+ while idx % ncols != 0:
148
+ images.append(white_image)
149
+ label_html_row += '<td></td>'
150
+ idx += 1
151
+ if label_html_row != '':
152
+ label_html += '<tr>%s</tr>' % label_html_row
153
+ try:
154
+ self.vis.images(images, nrow=ncols, win=self.display_id + 1,
155
+ padding=2, opts=dict(title=title + ' images'))
156
+ label_html = '<table>%s</table>' % label_html
157
+ self.vis.text(table_css + label_html, win=self.display_id + 2,
158
+ opts=dict(title=title + ' labels'))
159
+ except VisdomExceptionBase:
160
+ self.create_visdom_connections()
161
+
162
+ else: # show each image in a separate visdom panel;
163
+ idx = 1
164
+ try:
165
+ for label, image in visuals.items():
166
+ image_numpy = util.tensor2im(image)
167
+ self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label),
168
+ win=self.display_id + idx)
169
+ idx += 1
170
+ except VisdomExceptionBase:
171
+ self.create_visdom_connections()
172
+
173
+ if self.use_wandb:
174
+ columns = [key for key, _ in visuals.items()]
175
+ columns.insert(0, 'epoch')
176
+ result_table = wandb.Table(columns=columns)
177
+ table_row = [epoch]
178
+ ims_dict = {}
179
+ for label, image in visuals.items():
180
+ image_numpy = util.tensor2im(image)
181
+ wandb_image = wandb.Image(image_numpy)
182
+ table_row.append(wandb_image)
183
+ ims_dict[label] = wandb_image
184
+ self.wandb_run.log(ims_dict)
185
+ if epoch != self.current_epoch:
186
+ self.current_epoch = epoch
187
+ result_table.add_data(*table_row)
188
+ self.wandb_run.log({"Result": result_table})
189
+
190
+ if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved.
191
+ self.saved = True
192
+ # save images to the disk
193
+ for label, image in visuals.items():
194
+ image_numpy = util.tensor2im(image)
195
+ img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
196
+ util.save_image(image_numpy, img_path)
197
+
198
+ # update website
199
+ webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1)
200
+ for n in range(epoch, 0, -1):
201
+ webpage.add_header('epoch [%d]' % n)
202
+ ims, txts, links = [], [], []
203
+
204
+ for label, image_numpy in visuals.items():
205
+ image_numpy = util.tensor2im(image)
206
+ img_path = 'epoch%.3d_%s.png' % (n, label)
207
+ ims.append(img_path)
208
+ txts.append(label)
209
+ links.append(img_path)
210
+ webpage.add_images(ims, txts, links, width=self.win_size)
211
+ webpage.save()
212
+
213
+ def plot_current_losses(self, epoch, counter_ratio, losses):
214
+ """display the current losses on visdom display: dictionary of error labels and values
215
+
216
+ Parameters:
217
+ epoch (int) -- current epoch
218
+ counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
219
+ losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
220
+ """
221
+ if not hasattr(self, 'plot_data'):
222
+ self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
223
+ self.plot_data['X'].append(epoch + counter_ratio)
224
+ self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
225
+ try:
226
+ self.vis.line(
227
+ X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
228
+ Y=np.array(self.plot_data['Y']),
229
+ opts={
230
+ 'title': self.name + ' loss over time',
231
+ 'legend': self.plot_data['legend'],
232
+ 'xlabel': 'epoch',
233
+ 'ylabel': 'loss'},
234
+ win=self.display_id)
235
+ except VisdomExceptionBase:
236
+ self.create_visdom_connections()
237
+ if self.use_wandb:
238
+ self.wandb_run.log(losses)
239
+
240
+ # losses: same format as |losses| of plot_current_losses
241
+ def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
242
+ """print current losses on console; also save the losses to the disk
243
+
244
+ Parameters:
245
+ epoch (int) -- current epoch
246
+ iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
247
+ losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
248
+ t_comp (float) -- computational time per data point (normalized by batch_size)
249
+ t_data (float) -- data loading time per data point (normalized by batch_size)
250
+ """
251
+ message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
252
+ for k, v in losses.items():
253
+ message += '%s: %.3f ' % (k, v)
254
+
255
+ print(message) # print the message
256
+ with open(self.log_name, "a") as log_file:
257
+ log_file.write('%s\n' % message) # save the message