ClassUI / app.py
MattGPT's picture
Update app.py
a53e9dd
raw
history blame
3.74 kB
# Import necessary libraries
import gradio as gr # Gradio is used to create web interfaces for Python scripts.
from transformers import AutoConfig # AutoConfig is from the Hugging Face Transformers library, used to create configuration for various models.import gradio as gr
# A list of model names to start with. These are names of popular models from the Hugging Face library.
model_list = ["bert-base-uncased", "gpt2", "distilbert-base-uncased, "]
# Function to add a new model to the list.
def add_model_to_list(new_model):
# Check if the new model is not already in the list and is not an empty string.
if new_model and new_model not in model_list:
model_list.append(new_model) # Add the new model to the list.
return model_list
# Function to create a configuration for the selected model.
def create_config(model_name, num_labels, use_cache):
if isinstance(model_name, list):
model_name = model_name[0] # Take the first model name from the list if it's a list
# Ensure num_labels is an integer
num_labels = int(num_labels)
# If the selected model is not in the list, add it (this is a safety check).
if model_name not in model_list:
model_list.append(model_name)
# Create a configuration for the selected model using AutoConfig.
config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, use_cache='true')
return str(config) # Return the configuration as a string.
# Start building the Gradio interface
with gr.Group(elem_id="UI-conf"):
custom_css = """
.gradio-container {
background-color: #f0f0f0; /* Light grey background */
font-family: Arial, sans-serif;
}
.gradio-textbox {
border: 2px solid #4CAF50; /* Green border for textboxes */
border-radius: 5px;
}
.gradio-button {
background-color: #4CAF50; /* Green background for buttons */
color: white;
border: none;
border-radius: 5px;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
}
.gradio-button:hover {
background-color: #45a049; /* Darker green on hover */
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("## Config Class - Transformers") # Display a title for the web interface.
with gr.Row(): # Create a row in the interface to organize elements horizontally.
# Dropdown menu to select a model.
model_dropdown = gr.Dropdown(label="Select a Model", choices=model_list, value=model_list[0], allow_custom_value=True)
# Textbox for users to input a new model name.
new_model_input = gr.Textbox(label="Add a New Model", placeholder="Enter model name")
# Button to add the new model to the dropdown list.
add_model_button = gr.Button("Add Model")
# Numeric input for the number of labels (used in the model configuration).
num_labels_input = gr.Number(label="Number of Labels", value=2)
# Checkbox for users to decide whether to use caching.
use_cache_input = gr.Checkbox(label="Use Cache", value='true')
# Textbox to display the generated configuration.
output_area = gr.Textbox(label="Config Output",)
# Button to create the configuration.
submit_button = gr.Button("Create Config")
# When the "Add Model" button is clicked, call `add_model_to_list` function.
add_model_button.click(fn=add_model_to_list, inputs=new_model_input, outputs=model_dropdown)
# When the "Create Config" button is clicked, call `create_config` function.
submit_button.click(fn=create_config, inputs=[model_dropdown, num_labels_input, use_cache_input], outputs=output_area)
# Launch the Gradio interface.
demo.launch()