MaxBlumenfeld
commited on
Commit
·
3e99dbe
1
Parent(s):
d21d1ad
replaced app.py with side by side one
Browse files
app.py
CHANGED
@@ -2,44 +2,126 @@ import torch
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
def generate_response(message, temperature=0.7, max_length=200):
|
10 |
-
prompt = f"Human: {message}\nAssistant:"
|
11 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
-
|
13 |
-
with torch.no_grad():
|
14 |
-
outputs = model.generate(
|
15 |
-
inputs.input_ids,
|
16 |
-
max_length=max_length,
|
17 |
-
temperature=temperature,
|
18 |
-
do_sample=True,
|
19 |
-
pad_token_id=tokenizer.eos_token_id
|
20 |
-
)
|
21 |
-
|
22 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
-
return response.split("Assistant:")[-1].strip()
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with gr.Blocks() as demo:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
if __name__ == "__main__":
|
45 |
-
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load base model from HuggingFace and instruction model from local directory
|
6 |
+
base_model_id = "HuggingFaceTB/SmolLM2-135M"
|
7 |
+
# instruct_model_path = "5930Final/Fine-tuning/smollm2_finetuned/05" # Updated path
|
8 |
+
instruct_model_path = "MaxBlumenfeld/smollm2-135m-bootleg-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
|
11 |
+
base_tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
12 |
+
# instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_path, local_files_only=True)
|
13 |
+
instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_path)
|
14 |
+
|
15 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_id)
|
16 |
+
# instruct_model = AutoModelForCausalLM.from_pretrained(instruct_model_path, local_files_only=True)
|
17 |
+
instruct_model = AutoModelForCausalLM.from_pretrained(instruct_model_path)
|
18 |
+
|
19 |
+
|
20 |
+
def generate_response(model, tokenizer, message, temperature=0.5, max_length=200, system_prompt="", is_instruct=False):
|
21 |
+
# Prepare input based on model type
|
22 |
+
if is_instruct:
|
23 |
+
if system_prompt:
|
24 |
+
full_prompt = f"{system_prompt}\n\nHuman: {message}\nAssistant:"
|
25 |
+
else:
|
26 |
+
full_prompt = f"Human: {message}\nAssistant:"
|
27 |
+
else:
|
28 |
+
# For base model, use simpler prompt format
|
29 |
+
full_prompt = message
|
30 |
+
|
31 |
+
inputs = tokenizer(full_prompt, return_tensors="pt")
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(
|
35 |
+
inputs.input_ids,
|
36 |
+
max_length=max_length,
|
37 |
+
do_sample=True,
|
38 |
+
temperature=temperature,
|
39 |
+
top_k=50,
|
40 |
+
top_p=0.95,
|
41 |
+
num_return_sequences=1,
|
42 |
+
pad_token_id=tokenizer.eos_token_id # Add padding token
|
43 |
+
)
|
44 |
+
|
45 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
|
47 |
+
if is_instruct:
|
48 |
+
try:
|
49 |
+
response = response.split("Assistant:")[-1].strip()
|
50 |
+
except:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
response = response[len(full_prompt):].strip()
|
54 |
+
|
55 |
+
return response
|
56 |
+
|
57 |
+
def chat(message, temperature, max_length, system_prompt):
|
58 |
+
# Generate responses from both models
|
59 |
+
base_response = generate_response(
|
60 |
+
base_model,
|
61 |
+
base_tokenizer,
|
62 |
+
message,
|
63 |
+
temperature,
|
64 |
+
max_length,
|
65 |
+
system_prompt,
|
66 |
+
is_instruct=False
|
67 |
+
)
|
68 |
+
|
69 |
+
instruct_response = generate_response(
|
70 |
+
instruct_model,
|
71 |
+
instruct_tokenizer,
|
72 |
+
message,
|
73 |
+
temperature,
|
74 |
+
max_length,
|
75 |
+
system_prompt,
|
76 |
+
is_instruct=True
|
77 |
+
)
|
78 |
+
|
79 |
+
return base_response, instruct_response
|
80 |
+
|
81 |
+
# Create Gradio interface
|
82 |
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("# SmolLM2-135M Comparison Demo")
|
84 |
+
gr.Markdown("Compare responses between base and fine-tuned versions of SmolLM2-135M")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column():
|
88 |
+
message_input = gr.Textbox(label="Input Message")
|
89 |
+
system_prompt = gr.Textbox(
|
90 |
+
label="System Prompt (Optional)",
|
91 |
+
placeholder="Set context or personality for the model",
|
92 |
+
lines=3
|
93 |
+
)
|
94 |
+
|
95 |
+
with gr.Column():
|
96 |
+
temperature = gr.Slider(
|
97 |
+
minimum=0.1,
|
98 |
+
maximum=2.0,
|
99 |
+
value=0.5,
|
100 |
+
label="Temperature"
|
101 |
+
)
|
102 |
+
max_length = gr.Slider(
|
103 |
+
minimum=50,
|
104 |
+
maximum=500,
|
105 |
+
value=200,
|
106 |
+
step=10,
|
107 |
+
label="Max Length"
|
108 |
+
)
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
gr.Markdown("### Base Model Response")
|
113 |
+
base_output = gr.Textbox(label="Base Model (SmolLM2-135M)", lines=5)
|
114 |
+
|
115 |
+
with gr.Column():
|
116 |
+
gr.Markdown("### Bootleg Instruct Model Response")
|
117 |
+
instruct_output = gr.Textbox(label="Fine-tuned Model", lines=5)
|
118 |
+
|
119 |
+
submit_btn = gr.Button("Generate Responses")
|
120 |
+
submit_btn.click(
|
121 |
+
fn=chat,
|
122 |
+
inputs=[message_input, temperature, max_length, system_prompt],
|
123 |
+
outputs=[base_output, instruct_output]
|
124 |
+
)
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
+
demo.launch()
|