MaxBlumenfeld
commited on
Commit
·
cd33601
1
Parent(s):
e6e2d3b
switched to model uploadd in better format
Browse files
app.py
CHANGED
@@ -2,30 +2,17 @@ import torch
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
|
3 |
import gradio as gr
|
4 |
|
5 |
-
# base_model_id = "HuggingFaceTB/SmolLM2-135M"
|
6 |
-
# instruct_model_id = "MaxBlumenfeld/smollm2-135m-bootleg-instruct"
|
7 |
-
|
8 |
-
|
9 |
-
# base_tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
10 |
-
|
11 |
-
# # Load models with explicit configs
|
12 |
-
# base_config = LlamaConfig.from_pretrained(base_model_id)
|
13 |
-
# instruct_config = LlamaConfig.from_pretrained(base_model_id) # Using base model config for both since it's the same architecture
|
14 |
-
|
15 |
-
# base_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=base_config)
|
16 |
-
# instruct_model = AutoModelForCausalLM.from_pretrained(instruct_model_id, from_tf=True) # Added from_tf=True
|
17 |
-
|
18 |
|
19 |
# Model IDs from Hugging Face Hub
|
20 |
base_model_id = "HuggingFaceTB/SmolLM2-135M"
|
21 |
-
instruct_model_id = "MaxBlumenfeld/
|
22 |
|
23 |
# Load tokenizer
|
24 |
-
|
25 |
|
26 |
# Load models with explicit LLaMA architecture
|
27 |
base_model = LlamaForCausalLM.from_pretrained(base_model_id)
|
28 |
-
instruct_model = LlamaForCausalLM.from_pretrained(instruct_model_id
|
29 |
|
30 |
def generate_response(model, tokenizer, message, temperature=0.5, max_length=200, system_prompt="", is_instruct=False):
|
31 |
# Prepare input based on model type
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
|
3 |
import gradio as gr
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Model IDs from Hugging Face Hub
|
7 |
base_model_id = "HuggingFaceTB/SmolLM2-135M"
|
8 |
+
instruct_model_id = "MaxBlumenfeld/bootleg_instruct_01"
|
9 |
|
10 |
# Load tokenizer
|
11 |
+
base_tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
12 |
|
13 |
# Load models with explicit LLaMA architecture
|
14 |
base_model = LlamaForCausalLM.from_pretrained(base_model_id)
|
15 |
+
instruct_model = LlamaForCausalLM.from_pretrained(instruct_model_id)
|
16 |
|
17 |
def generate_response(model, tokenizer, message, temperature=0.5, max_length=200, system_prompt="", is_instruct=False):
|
18 |
# Prepare input based on model type
|