MaxBlumenfeld commited on
Commit
e24832b
·
1 Parent(s): ff626ca

replaced with my app.py file

Browse files
Files changed (1) hide show
  1. app.py +41 -60
app.py CHANGED
@@ -1,64 +1,45 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ model_id = "MaxBlumenfeld/smollm2-135m-bootleg-instruct"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(model_id)
8
+
9
+ def generate_response(message, temperature=0.7, max_length=200):
10
+ prompt = f"Human: {message}\nAssistant:"
11
+ inputs = tokenizer(prompt, return_tensors="pt")
12
+
13
+ with torch.no_grad():
14
+ outputs = model.generate(
15
+ inputs.input_ids,
16
+ max_length=max_length,
17
+ temperature=temperature,
18
+ do_sample=True,
19
+ pad_token_id=tokenizer.eos_token_id
20
+ )
21
+
22
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
+ return response.split("Assistant:")[-1].strip()
24
+
25
+ with gr.Blocks() as demo:
26
+ gr.Markdown("# SmolLM2 Bootleg Instruct Chat")
27
+
28
+ with gr.Row():
29
+ with gr.Column():
30
+ message = gr.Textbox(label="Message")
31
+ temp = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature")
32
+ max_len = gr.Slider(minimum=50, maximum=500, value=200, label="Max Length")
33
+ submit = gr.Button("Send")
34
+
35
+ with gr.Column():
36
+ output = gr.Textbox(label="Response")
37
+
38
+ submit.click(
39
+ generate_response,
40
+ inputs=[message, temp, max_len],
41
+ outputs=output
42
+ )
43
 
44
  if __name__ == "__main__":
45
+ demo.launch()