dreamgaussian2 / simple-knn /simple_knn.cu
jiawei011's picture
init
12b7f59
raw
history blame
6.35 kB
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact [email protected]
*/
#define BOX_SIZE 1024
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "simple_knn.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#include <vector>
#include <cuda_runtime_api.h>
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#define __CUDACC__
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
struct CustomMin
{
__device__ __forceinline__
float3 operator()(const float3& a, const float3& b) const {
return { min(a.x, b.x), min(a.y, b.y), min(a.z, b.z) };
}
};
struct CustomMax
{
__device__ __forceinline__
float3 operator()(const float3& a, const float3& b) const {
return { max(a.x, b.x), max(a.y, b.y), max(a.z, b.z) };
}
};
__host__ __device__ uint32_t prepMorton(uint32_t x)
{
x = (x | (x << 16)) & 0x030000FF;
x = (x | (x << 8)) & 0x0300F00F;
x = (x | (x << 4)) & 0x030C30C3;
x = (x | (x << 2)) & 0x09249249;
return x;
}
__host__ __device__ uint32_t coord2Morton(float3 coord, float3 minn, float3 maxx)
{
uint32_t x = prepMorton(((coord.x - minn.x) / (maxx.x - minn.x)) * ((1 << 10) - 1));
uint32_t y = prepMorton(((coord.y - minn.y) / (maxx.y - minn.y)) * ((1 << 10) - 1));
uint32_t z = prepMorton(((coord.z - minn.z) / (maxx.z - minn.z)) * ((1 << 10) - 1));
return x | (y << 1) | (z << 2);
}
__global__ void coord2Morton(int P, const float3* points, float3 minn, float3 maxx, uint32_t* codes)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
codes[idx] = coord2Morton(points[idx], minn, maxx);
}
struct MinMax
{
float3 minn;
float3 maxx;
};
__global__ void boxMinMax(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes)
{
auto idx = cg::this_grid().thread_rank();
MinMax me;
if (idx < P)
{
me.minn = points[indices[idx]];
me.maxx = points[indices[idx]];
}
else
{
me.minn = { FLT_MAX, FLT_MAX, FLT_MAX };
me.maxx = { -FLT_MAX,-FLT_MAX,-FLT_MAX };
}
__shared__ MinMax redResult[BOX_SIZE];
for (int off = BOX_SIZE / 2; off >= 1; off /= 2)
{
if (threadIdx.x < 2 * off)
redResult[threadIdx.x] = me;
__syncthreads();
if (threadIdx.x < off)
{
MinMax other = redResult[threadIdx.x + off];
me.minn.x = min(me.minn.x, other.minn.x);
me.minn.y = min(me.minn.y, other.minn.y);
me.minn.z = min(me.minn.z, other.minn.z);
me.maxx.x = max(me.maxx.x, other.maxx.x);
me.maxx.y = max(me.maxx.y, other.maxx.y);
me.maxx.z = max(me.maxx.z, other.maxx.z);
}
__syncthreads();
}
if (threadIdx.x == 0)
boxes[blockIdx.x] = me;
}
__device__ __host__ float distBoxPoint(const MinMax& box, const float3& p)
{
float3 diff = { 0, 0, 0 };
if (p.x < box.minn.x || p.x > box.maxx.x)
diff.x = min(abs(p.x - box.minn.x), abs(p.x - box.maxx.x));
if (p.y < box.minn.y || p.y > box.maxx.y)
diff.y = min(abs(p.y - box.minn.y), abs(p.y - box.maxx.y));
if (p.z < box.minn.z || p.z > box.maxx.z)
diff.z = min(abs(p.z - box.minn.z), abs(p.z - box.maxx.z));
return diff.x * diff.x + diff.y * diff.y + diff.z * diff.z;
}
template<int K>
__device__ void updateKBest(const float3& ref, const float3& point, float* knn)
{
float3 d = { point.x - ref.x, point.y - ref.y, point.z - ref.z };
float dist = d.x * d.x + d.y * d.y + d.z * d.z;
for (int j = 0; j < K; j++)
{
if (knn[j] > dist)
{
float t = knn[j];
knn[j] = dist;
dist = t;
}
}
}
__global__ void boxMeanDist(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes, float* dists)
{
int idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
float3 point = points[indices[idx]];
float best[3] = { FLT_MAX, FLT_MAX, FLT_MAX };
for (int i = max(0, idx - 3); i <= min(P - 1, idx + 3); i++)
{
if (i == idx)
continue;
updateKBest<3>(point, points[indices[i]], best);
}
float reject = best[2];
best[0] = FLT_MAX;
best[1] = FLT_MAX;
best[2] = FLT_MAX;
for (int b = 0; b < (P + BOX_SIZE - 1) / BOX_SIZE; b++)
{
MinMax box = boxes[b];
float dist = distBoxPoint(box, point);
if (dist > reject || dist > best[2])
continue;
for (int i = b * BOX_SIZE; i < min(P, (b + 1) * BOX_SIZE); i++)
{
if (i == idx)
continue;
updateKBest<3>(point, points[indices[i]], best);
}
}
dists[indices[idx]] = (best[0] + best[1] + best[2]) / 3.0f;
}
void SimpleKNN::knn(int P, float3* points, float* meanDists)
{
float3* result;
cudaMalloc(&result, sizeof(float3));
size_t temp_storage_bytes;
float3 init = { 0, 0, 0 }, minn, maxx;
cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, points, result, P, CustomMin(), init);
thrust::device_vector<char> temp_storage(temp_storage_bytes);
cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMin(), init);
cudaMemcpy(&minn, result, sizeof(float3), cudaMemcpyDeviceToHost);
cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMax(), init);
cudaMemcpy(&maxx, result, sizeof(float3), cudaMemcpyDeviceToHost);
thrust::device_vector<uint32_t> morton(P);
thrust::device_vector<uint32_t> morton_sorted(P);
coord2Morton << <(P + 255) / 256, 256 >> > (P, points, minn, maxx, morton.data().get());
thrust::device_vector<uint32_t> indices(P);
thrust::sequence(indices.begin(), indices.end());
thrust::device_vector<uint32_t> indices_sorted(P);
cub::DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
temp_storage.resize(temp_storage_bytes);
cub::DeviceRadixSort::SortPairs(temp_storage.data().get(), temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
uint32_t num_boxes = (P + BOX_SIZE - 1) / BOX_SIZE;
thrust::device_vector<MinMax> boxes(num_boxes);
boxMinMax << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get());
boxMeanDist << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get(), meanDists);
cudaFree(result);
}