Spaces:
Runtime error
Runtime error
Megatron17
commited on
Commit
·
82e800c
1
Parent(s):
227bb46
Upload 3 files
Browse files
config.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from albumentations.pytorch import ToTensorV2
|
6 |
+
|
7 |
+
|
8 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
|
11 |
+
IMAGE_SIZE = 416
|
12 |
+
transforms = A.Compose(
|
13 |
+
[
|
14 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
15 |
+
A.PadIfNeeded(
|
16 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
17 |
+
),
|
18 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
19 |
+
ToTensorV2(),
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
ANCHORS = [
|
25 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
26 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
27 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
28 |
+
] # Note these have been rescaled to be between [0, 1]
|
29 |
+
|
30 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
31 |
+
|
32 |
+
scaled_anchors = (
|
33 |
+
torch.tensor(ANCHORS)
|
34 |
+
* torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
35 |
+
).to(DEVICE)
|
36 |
+
|
37 |
+
PASCAL_CLASSES = [
|
38 |
+
"aeroplane",
|
39 |
+
"bicycle",
|
40 |
+
"bird",
|
41 |
+
"boat",
|
42 |
+
"bottle",
|
43 |
+
"bus",
|
44 |
+
"car",
|
45 |
+
"cat",
|
46 |
+
"chair",
|
47 |
+
"cow",
|
48 |
+
"diningtable",
|
49 |
+
"dog",
|
50 |
+
"horse",
|
51 |
+
"motorbike",
|
52 |
+
"person",
|
53 |
+
"pottedplant",
|
54 |
+
"sheep",
|
55 |
+
"sofa",
|
56 |
+
"train",
|
57 |
+
"tvmonitor"
|
58 |
+
]
|
model.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
import config as cfg
|
5 |
+
|
6 |
+
"""
|
7 |
+
Information about architecture config:
|
8 |
+
Tuple is structured by (filters, kernel_size, stride)
|
9 |
+
Every conv is a same convolution.
|
10 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
11 |
+
"S" is for scale prediction block and computing the yolo loss
|
12 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
13 |
+
"""
|
14 |
+
config = [
|
15 |
+
(32, 3, 1),
|
16 |
+
(64, 3, 2),
|
17 |
+
["B", 1],
|
18 |
+
(128, 3, 2),
|
19 |
+
["B", 2],
|
20 |
+
(256, 3, 2),
|
21 |
+
["B", 8],
|
22 |
+
(512, 3, 2),
|
23 |
+
["B", 8],
|
24 |
+
(1024, 3, 2),
|
25 |
+
["B", 4], # To this point is Darknet-53
|
26 |
+
(512, 1, 1),
|
27 |
+
(1024, 3, 1),
|
28 |
+
"S",
|
29 |
+
(256, 1, 1),
|
30 |
+
"U",
|
31 |
+
(256, 1, 1),
|
32 |
+
(512, 3, 1),
|
33 |
+
"S",
|
34 |
+
(128, 1, 1),
|
35 |
+
"U",
|
36 |
+
(128, 1, 1),
|
37 |
+
(256, 3, 1),
|
38 |
+
"S",
|
39 |
+
]
|
40 |
+
|
41 |
+
class CNNBlock(nn.Module):
|
42 |
+
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
43 |
+
super().__init__()
|
44 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
45 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
46 |
+
self.leaky = nn.LeakyReLU(0.1)
|
47 |
+
self.use_bn_act = bn_act
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
if self.use_bn_act:
|
51 |
+
return self.leaky(self.bn(self.conv(x)))
|
52 |
+
else:
|
53 |
+
return self.conv(x)
|
54 |
+
|
55 |
+
|
56 |
+
class ResidualBlock(nn.Module):
|
57 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
58 |
+
super().__init__()
|
59 |
+
self.layers = nn.ModuleList()
|
60 |
+
for repeat in range(num_repeats):
|
61 |
+
self.layers += [
|
62 |
+
nn.Sequential(
|
63 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
64 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
65 |
+
)
|
66 |
+
]
|
67 |
+
|
68 |
+
self.use_residual = use_residual
|
69 |
+
self.num_repeats = num_repeats
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
for layer in self.layers:
|
73 |
+
if self.use_residual:
|
74 |
+
x = x + layer(x)
|
75 |
+
else:
|
76 |
+
x = layer(x)
|
77 |
+
|
78 |
+
return x
|
79 |
+
|
80 |
+
|
81 |
+
class ScalePrediction(nn.Module):
|
82 |
+
def __init__(self, in_channels, num_classes):
|
83 |
+
super().__init__()
|
84 |
+
self.pred = nn.Sequential(
|
85 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
86 |
+
CNNBlock(
|
87 |
+
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
88 |
+
),
|
89 |
+
)
|
90 |
+
self.num_classes = num_classes
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
return (
|
94 |
+
self.pred(x)
|
95 |
+
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
|
96 |
+
.permute(0, 1, 3, 4, 2)
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
class Lightning_YOLO(pl.LightningModule):
|
101 |
+
def __init__(self, in_channels=3, num_classes=20):
|
102 |
+
super().__init__()
|
103 |
+
self.num_classes = num_classes
|
104 |
+
self.in_channels = in_channels
|
105 |
+
self.layers = self._create_conv_layers()
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
outputs = [] # for each scale
|
109 |
+
route_connections = []
|
110 |
+
for layer in self.layers:
|
111 |
+
if isinstance(layer, ScalePrediction):
|
112 |
+
outputs.append(layer(x))
|
113 |
+
continue
|
114 |
+
|
115 |
+
x = layer(x)
|
116 |
+
|
117 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
118 |
+
route_connections.append(x)
|
119 |
+
|
120 |
+
elif isinstance(layer, nn.Upsample):
|
121 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
122 |
+
route_connections.pop()
|
123 |
+
|
124 |
+
return outputs
|
125 |
+
|
126 |
+
def _create_conv_layers(self):
|
127 |
+
layers = nn.ModuleList()
|
128 |
+
in_channels = self.in_channels
|
129 |
+
|
130 |
+
for module in config:
|
131 |
+
if isinstance(module, tuple):
|
132 |
+
out_channels, kernel_size, stride = module
|
133 |
+
layers.append(
|
134 |
+
CNNBlock(
|
135 |
+
in_channels,
|
136 |
+
out_channels,
|
137 |
+
kernel_size=kernel_size,
|
138 |
+
stride=stride,
|
139 |
+
padding=1 if kernel_size == 3 else 0,
|
140 |
+
)
|
141 |
+
)
|
142 |
+
in_channels = out_channels
|
143 |
+
|
144 |
+
elif isinstance(module, list):
|
145 |
+
num_repeats = module[1]
|
146 |
+
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
147 |
+
|
148 |
+
elif isinstance(module, str):
|
149 |
+
if module == "S":
|
150 |
+
layers += [
|
151 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
152 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
153 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
154 |
+
]
|
155 |
+
in_channels = in_channels // 2
|
156 |
+
|
157 |
+
elif module == "U":
|
158 |
+
layers.append(nn.Upsample(scale_factor=2),)
|
159 |
+
in_channels = in_channels * 3
|
160 |
+
|
161 |
+
return layers
|
utils.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import random
|
6 |
+
|
7 |
+
from pytorch_grad_cam.base_cam import BaseCAM
|
8 |
+
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
9 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
10 |
+
|
11 |
+
|
12 |
+
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
13 |
+
"""
|
14 |
+
Scales the predictions coming from the model to
|
15 |
+
be relative to the entire image such that they for example later
|
16 |
+
can be plotted or.
|
17 |
+
INPUT:
|
18 |
+
predictions: tensor of size (N, 3, S, S, num_classes+5)
|
19 |
+
anchors: the anchors used for the predictions
|
20 |
+
S: the number of cells the image is divided in on the width (and height)
|
21 |
+
is_preds: whether the input is predictions or the true bounding boxes
|
22 |
+
OUTPUT:
|
23 |
+
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
|
24 |
+
object score, bounding box coordinates
|
25 |
+
"""
|
26 |
+
BATCH_SIZE = predictions.shape[0]
|
27 |
+
num_anchors = len(anchors)
|
28 |
+
box_predictions = predictions[..., 1:5]
|
29 |
+
if is_preds:
|
30 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
31 |
+
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
|
32 |
+
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
|
33 |
+
scores = torch.sigmoid(predictions[..., 0:1])
|
34 |
+
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
|
35 |
+
else:
|
36 |
+
scores = predictions[..., 0:1]
|
37 |
+
best_class = predictions[..., 5:6]
|
38 |
+
|
39 |
+
cell_indices = (
|
40 |
+
torch.arange(S)
|
41 |
+
.repeat(predictions.shape[0], 3, S, 1)
|
42 |
+
.unsqueeze(-1)
|
43 |
+
.to(predictions.device)
|
44 |
+
)
|
45 |
+
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
|
46 |
+
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
|
47 |
+
w_h = 1 / S * box_predictions[..., 2:4]
|
48 |
+
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
|
49 |
+
return converted_bboxes.tolist()
|
50 |
+
|
51 |
+
|
52 |
+
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
|
53 |
+
"""
|
54 |
+
Video explanation of this function:
|
55 |
+
https://youtu.be/XXYG5ZWtjj0
|
56 |
+
This function calculates intersection over union (iou) given pred boxes
|
57 |
+
and target boxes.
|
58 |
+
Parameters:
|
59 |
+
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
|
60 |
+
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
|
61 |
+
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
|
62 |
+
Returns:
|
63 |
+
tensor: Intersection over union for all examples
|
64 |
+
"""
|
65 |
+
|
66 |
+
if box_format == "midpoint":
|
67 |
+
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
|
68 |
+
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
|
69 |
+
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
|
70 |
+
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
|
71 |
+
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
|
72 |
+
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
|
73 |
+
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
|
74 |
+
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
|
75 |
+
|
76 |
+
if box_format == "corners":
|
77 |
+
box1_x1 = boxes_preds[..., 0:1]
|
78 |
+
box1_y1 = boxes_preds[..., 1:2]
|
79 |
+
box1_x2 = boxes_preds[..., 2:3]
|
80 |
+
box1_y2 = boxes_preds[..., 3:4]
|
81 |
+
box2_x1 = boxes_labels[..., 0:1]
|
82 |
+
box2_y1 = boxes_labels[..., 1:2]
|
83 |
+
box2_x2 = boxes_labels[..., 2:3]
|
84 |
+
box2_y2 = boxes_labels[..., 3:4]
|
85 |
+
|
86 |
+
x1 = torch.max(box1_x1, box2_x1)
|
87 |
+
y1 = torch.max(box1_y1, box2_y1)
|
88 |
+
x2 = torch.min(box1_x2, box2_x2)
|
89 |
+
y2 = torch.min(box1_y2, box2_y2)
|
90 |
+
|
91 |
+
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
92 |
+
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
|
93 |
+
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
|
94 |
+
|
95 |
+
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
96 |
+
|
97 |
+
|
98 |
+
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
99 |
+
"""
|
100 |
+
Video explanation of this function:
|
101 |
+
https://youtu.be/YDkjWEN8jNA
|
102 |
+
Does Non Max Suppression given bboxes
|
103 |
+
Parameters:
|
104 |
+
bboxes (list): list of lists containing all bboxes with each bboxes
|
105 |
+
specified as [class_pred, prob_score, x1, y1, x2, y2]
|
106 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
107 |
+
threshold (float): threshold to remove predicted bboxes (independent of IoU)
|
108 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
109 |
+
Returns:
|
110 |
+
list: bboxes after performing NMS given a specific IoU threshold
|
111 |
+
"""
|
112 |
+
|
113 |
+
assert type(bboxes) == list
|
114 |
+
|
115 |
+
bboxes = [box for box in bboxes if box[1] > threshold]
|
116 |
+
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
|
117 |
+
bboxes_after_nms = []
|
118 |
+
|
119 |
+
while bboxes:
|
120 |
+
chosen_box = bboxes.pop(0)
|
121 |
+
|
122 |
+
bboxes = [
|
123 |
+
box
|
124 |
+
for box in bboxes
|
125 |
+
if box[0] != chosen_box[0]
|
126 |
+
or intersection_over_union(
|
127 |
+
torch.tensor(chosen_box[2:]),
|
128 |
+
torch.tensor(box[2:]),
|
129 |
+
box_format=box_format,
|
130 |
+
)
|
131 |
+
< iou_threshold
|
132 |
+
]
|
133 |
+
|
134 |
+
bboxes_after_nms.append(chosen_box)
|
135 |
+
|
136 |
+
return bboxes_after_nms
|
137 |
+
|
138 |
+
|
139 |
+
def draw_bounding_boxes(image, boxes, class_labels):
|
140 |
+
|
141 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
|
142 |
+
|
143 |
+
im = np.array(image)
|
144 |
+
height, width, _ = im.shape
|
145 |
+
bbox_thick = int(0.6 * (height + width) / 600)
|
146 |
+
|
147 |
+
# Create a Rectangle patch
|
148 |
+
for box in boxes:
|
149 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
150 |
+
class_pred = box[0]
|
151 |
+
conf = box[1]
|
152 |
+
box = box[2:]
|
153 |
+
upper_left_x = box[0] - box[2] / 2
|
154 |
+
upper_left_y = box[1] - box[3] / 2
|
155 |
+
|
156 |
+
x1 = int(upper_left_x * width)
|
157 |
+
y1 = int(upper_left_y * height)
|
158 |
+
|
159 |
+
x2 = x1 + int(box[2] * width)
|
160 |
+
y2 = y1 + int(box[3] * height)
|
161 |
+
|
162 |
+
cv2.rectangle(
|
163 |
+
image,
|
164 |
+
(x1, y1), (x2, y2),
|
165 |
+
color=colors[int(class_pred)],
|
166 |
+
thickness=bbox_thick
|
167 |
+
)
|
168 |
+
text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
|
169 |
+
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
|
170 |
+
c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
|
171 |
+
|
172 |
+
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
|
173 |
+
cv2.putText(
|
174 |
+
image,
|
175 |
+
text,
|
176 |
+
(x1, y1 - 2),
|
177 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
178 |
+
0.7,
|
179 |
+
(0, 0, 0),
|
180 |
+
bbox_thick // 2,
|
181 |
+
lineType=cv2.LINE_AA,
|
182 |
+
)
|
183 |
+
|
184 |
+
return image
|