Spaces:
Menyu
/
Running on Zero

Menyu commited on
Commit
40457bb
·
verified ·
1 Parent(s): 67fa38d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +153 -102
app.py CHANGED
@@ -1,68 +1,104 @@
1
- import gradio as gr
2
- import numpy as np
3
  import random
 
 
4
 
5
- import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
 
 
7
  import torch
 
8
 
9
- device = "cuda"
10
- model_repo_id = "anon4ik/noobaiXLNAIXL_epsilonPred05Version" # Replace to the model you would like to use
11
-
12
- pipe = StableDiffusionXLPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16)
13
- pipe = pipe.to(device)
14
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
- MAX_IMAGE_SIZE = 1024
17
-
18
-
19
- @spaces.GPU #[uncomment to use ZeroGPU]
20
- def infer(
21
- prompt,
22
- negative_prompt,
23
- seed,
24
- randomize_seed,
25
- width,
26
- height,
27
- guidance_scale,
28
- num_inference_steps,
29
- progress=gr.Progress(track_tqdm=True),
30
- ):
 
 
 
 
 
 
 
 
 
31
  if randomize_seed:
32
  seed = random.randint(0, MAX_SEED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
35
 
36
- image = pipe(
37
- prompt=prompt,
38
- negative_prompt=negative_prompt,
39
- guidance_scale=guidance_scale,
40
- num_inference_steps=num_inference_steps,
41
- width=width,
42
- height=height,
43
- generator=generator,
44
- ).images[0]
45
 
46
- return image, seed
 
47
 
48
 
49
  examples = [
50
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
51
- "An astronaut riding a green horse",
52
- "A delicious ceviche cheesecake slice",
 
 
 
53
  ]
54
 
55
- css = """
56
- #col-container {
57
- margin: 0 auto;
58
- max-width: 640px;
 
59
  }
60
- """
61
-
62
  with gr.Blocks(css=css) as demo:
63
- with gr.Column(elem_id="col-container"):
64
- gr.Markdown(" # Text-to-Image Gradio Template")
65
-
66
  with gr.Row():
67
  prompt = gr.Text(
68
  label="Prompt",
@@ -71,79 +107,94 @@ with gr.Blocks(css=css) as demo:
71
  placeholder="Enter your prompt",
72
  container=False,
73
  )
74
-
75
- run_button = gr.Button("Run", scale=0, variant="primary")
76
-
77
- result = gr.Image(label="Result", show_label=False)
78
-
79
- with gr.Accordion("Advanced Settings", open=True):
80
  negative_prompt = gr.Text(
81
  label="Negative prompt",
82
- max_lines=1,
 
83
  placeholder="Enter a negative prompt",
84
- visible=False,
 
85
  )
86
-
87
- seed = gr.Slider(
88
- label="Seed",
89
- minimum=0,
90
- maximum=MAX_SEED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  step=1,
92
- value=0,
93
  )
94
 
95
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
96
-
97
- with gr.Row():
98
- width = gr.Slider(
99
- label="Width",
100
- minimum=256,
101
- maximum=MAX_IMAGE_SIZE,
102
- step=32,
103
- value=512, # Replace with defaults that work for your model
104
- )
105
-
106
- height = gr.Slider(
107
- label="Height",
108
- minimum=256,
109
- maximum=MAX_IMAGE_SIZE,
110
- step=32,
111
- value=768, # Replace with defaults that work for your model
112
- )
113
-
114
- with gr.Row():
115
- guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
- step=0.1,
120
- value=1, # Replace with defaults that work for your model
121
- )
122
-
123
- num_inference_steps = gr.Slider(
124
- label="Number of inference steps",
125
- minimum=1,
126
- maximum=50,
127
- step=1,
128
- value=28, # Replace with defaults that work for your model
129
- )
130
-
131
- gr.Examples(examples=examples, inputs=[prompt])
132
  gr.on(
133
- triggers=[run_button.click, prompt.submit],
134
- fn=infer,
 
 
 
 
135
  inputs=[
136
  prompt,
137
  negative_prompt,
 
138
  seed,
139
- randomize_seed,
140
  width,
141
  height,
142
  guidance_scale,
143
  num_inference_steps,
 
144
  ],
145
  outputs=[result, seed],
 
146
  )
147
 
148
  if __name__ == "__main__":
149
- demo.launch()
 
1
+ import os
 
2
  import random
3
+ import uuid
4
+ import json
5
 
6
+ import gradio as gr
7
+ import numpy as np
8
+ from PIL import Image
9
+ import spaces
10
  import torch
11
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
12
 
13
+ if not torch.cuda.is_available():
14
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
 
 
 
15
 
16
  MAX_SEED = np.iinfo(np.int32).max
17
+ CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
18
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
19
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
20
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
21
+
22
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
23
+
24
+ if torch.cuda.is_available():
25
+ pipe = StableDiffusionXLPipeline.from_pretrained(
26
+ "anon4ik/noobaiXLNAIXL_epsilonPred05Version",
27
+ torch_dtype=torch.float16,
28
+ use_safetensors=True,
29
+ add_watermarker=False
30
+ )
31
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
32
+ pipe.to("cuda")
33
+
34
+
35
+ def save_image(img):
36
+ unique_name = str(uuid.uuid4()) + ".png"
37
+ img.save(unique_name)
38
+ return unique_name
39
+
40
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
41
  if randomize_seed:
42
  seed = random.randint(0, MAX_SEED)
43
+ return seed
44
+
45
+ @spaces.GPU(queue=False,duration=30)
46
+ def generate(
47
+ prompt: str,
48
+ negative_prompt: str = "",
49
+ use_negative_prompt: bool = False,
50
+ seed: int = 1,
51
+ width: int = 1024,
52
+ height: int = 1024,
53
+ guidance_scale: float = 3,
54
+ num_inference_steps: int = 30,
55
+ randomize_seed: bool = False,
56
+ use_resolution_binning: bool = True,
57
+ progress=gr.Progress(track_tqdm=True),
58
+ ):
59
+ pipe.to(device)
60
+ seed = int(randomize_seed_fn(seed, randomize_seed))
61
+ generator = torch.Generator().manual_seed(seed)
62
 
63
+ options = {
64
+ "prompt":prompt,
65
+ "negative_prompt":negative_prompt,
66
+ "width":width,
67
+ "height":height,
68
+ "guidance_scale":guidance_scale,
69
+ "num_inference_steps":num_inference_steps,
70
+ "generator":generator,
71
+ "use_resolution_binning":use_resolution_binning,
72
+ "output_type":"pil",
73
 
74
+ }
75
+
76
+ images = pipe(**options).images
 
 
 
 
 
 
77
 
78
+ image_paths = [save_image(img) for img in images]
79
+ return image_paths, seed
80
 
81
 
82
  examples = [
83
+ "a cat eating a piece of cheese",
84
+ "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
85
+ "Ironman VS Hulk, ultrarealistic",
86
+ "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
87
+ "An alien holding sign board contain word 'Flash', futuristic, neonpunk",
88
+ "Kids going to school, Anime style"
89
  ]
90
 
91
+ css = '''
92
+ .gradio-container{max-width: 560px !important}
93
+ h1{text-align:center}
94
+ footer {
95
+ visibility: hidden
96
  }
97
+ '''
 
98
  with gr.Blocks(css=css) as demo:
99
+ gr.Markdown("""# SDXL Flash
100
+ ### First Image processing takes time then images generate faster.""")
101
+ with gr.Group():
102
  with gr.Row():
103
  prompt = gr.Text(
104
  label="Prompt",
 
107
  placeholder="Enter your prompt",
108
  container=False,
109
  )
110
+ run_button = gr.Button("Run", scale=0)
111
+ result = gr.Gallery(label="Result", columns=1)
112
+ with gr.Accordion("Advanced options", open=False):
113
+ with gr.Row():
114
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
 
115
  negative_prompt = gr.Text(
116
  label="Negative prompt",
117
+ max_lines=5,
118
+ lines=4,
119
  placeholder="Enter a negative prompt",
120
+ value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
121
+ visible=True,
122
  )
123
+ seed = gr.Slider(
124
+ label="Seed",
125
+ minimum=0,
126
+ maximum=MAX_SEED,
127
+ step=1,
128
+ value=0,
129
+ )
130
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
131
+ with gr.Row(visible=True):
132
+ width = gr.Slider(
133
+ label="Width",
134
+ minimum=512,
135
+ maximum=MAX_IMAGE_SIZE,
136
+ step=64,
137
+ value=1024,
138
+ )
139
+ height = gr.Slider(
140
+ label="Height",
141
+ minimum=512,
142
+ maximum=MAX_IMAGE_SIZE,
143
+ step=64,
144
+ value=1024,
145
+ )
146
+ with gr.Row():
147
+ guidance_scale = gr.Slider(
148
+ label="Guidance Scale",
149
+ minimum=0.1,
150
+ maximum=6,
151
+ step=0.1,
152
+ value=3.0,
153
+ )
154
+ num_inference_steps = gr.Slider(
155
+ label="Number of inference steps",
156
+ minimum=1,
157
+ maximum=15,
158
  step=1,
159
+ value=8,
160
  )
161
 
162
+ gr.Examples(
163
+ examples=examples,
164
+ inputs=prompt,
165
+ outputs=[result, seed],
166
+ fn=generate,
167
+ cache_examples=CACHE_EXAMPLES,
168
+ )
169
+
170
+ use_negative_prompt.change(
171
+ fn=lambda x: gr.update(visible=x),
172
+ inputs=use_negative_prompt,
173
+ outputs=negative_prompt,
174
+ api_name=False,
175
+ )
176
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
  gr.on(
178
+ triggers=[
179
+ prompt.submit,
180
+ negative_prompt.submit,
181
+ run_button.click,
182
+ ],
183
+ fn=generate,
184
  inputs=[
185
  prompt,
186
  negative_prompt,
187
+ use_negative_prompt,
188
  seed,
 
189
  width,
190
  height,
191
  guidance_scale,
192
  num_inference_steps,
193
+ randomize_seed,
194
  ],
195
  outputs=[result, seed],
196
+ api_name="run",
197
  )
198
 
199
  if __name__ == "__main__":
200
+ demo.queue(max_size=20).launch()