Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -34,15 +34,13 @@ model_name = "MiVaCod/mbart-neutralization"
|
|
34 |
text2text_tkn= MBart50Tokenizer.from_pretrained(model_name)
|
35 |
mdl = T5ForConditionalGeneration.from_pretrained(model_name)
|
36 |
|
37 |
-
def text2text_paraphrase(sentence1
|
38 |
inp1 = "rte sentence1: "+sentence1
|
39 |
-
|
40 |
-
combined_inp=inp1+" "+inp2
|
41 |
-
enc = text2text_tkn(combined_inp, return_tensors="pt")
|
42 |
tokens = mdl.generate(**enc)
|
43 |
response=text2text_tkn.batch_decode(tokens)
|
44 |
return response
|
45 |
|
46 |
sent1=grad.Textbox(lines=1, label="Frase misógina", placeholder="Introduce una frase misógina")
|
47 |
out=grad.Textbox(lines=1, label="Frase corregida")
|
48 |
-
grad.Interface(text2text_paraphrase, inputs=[sent1
|
|
|
34 |
text2text_tkn= MBart50Tokenizer.from_pretrained(model_name)
|
35 |
mdl = T5ForConditionalGeneration.from_pretrained(model_name)
|
36 |
|
37 |
+
def text2text_paraphrase(sentence1):
|
38 |
inp1 = "rte sentence1: "+sentence1
|
39 |
+
enc = text2text_tkn(inp1, return_tensors="pt")
|
|
|
|
|
40 |
tokens = mdl.generate(**enc)
|
41 |
response=text2text_tkn.batch_decode(tokens)
|
42 |
return response
|
43 |
|
44 |
sent1=grad.Textbox(lines=1, label="Frase misógina", placeholder="Introduce una frase misógina")
|
45 |
out=grad.Textbox(lines=1, label="Frase corregida")
|
46 |
+
grad.Interface(text2text_paraphrase, inputs=[sent1], outputs=out).launch()
|