File size: 1,699 Bytes
7c31af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torchvision import transforms
from transformers import AutoImageProcessor, MobileViTV2ForImageClassification
import gradio as gr

model_url = "MichalMlodawski/open-closed-eye-classification-mobilevitv2-1.0"

image_processor = AutoImageProcessor.from_pretrained(model_url)
model = MobileViTV2ForImageClassification.from_pretrained(model_url)
model.eval()

transform = transforms.Compose([
    transforms.Resize((512, 512)),
    transforms.ToTensor()
])

def classify_image(image):
    image = image.convert("RGB")
    image_tensor = transform(image).unsqueeze(0)

    inputs = image_processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
        confidence, predicted = torch.max(probabilities, 1)

    labels = ["👁️ Eye Closed", "👁️ Eye Open"]
    prediction = labels[predicted.item()]
    confidence = confidence.item() * 100

    confidence_bar = "🟩" * int(confidence // 10) + "⬜" * (10 - int(confidence // 10))

    return f"🔍 Prediction: {prediction}\n🎯 Confidence: {confidence:.2f}% {confidence_bar}"

def gradio_interface(image):
    return classify_image(image)

iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Image(type="pil", label="📷 Upload an image"),
    outputs=gr.Textbox(label="🖥️ Classification Result"),
    title="👁️ Eye State Classification 👁️",
    description="Upload an image to classify whether the eye is open or closed. Let's see what we can spot! 👀",
    theme=gr.themes.Soft(primary_hue="blue"),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()