Mileena's picture
Duplicate from IgorSense/Diffusion_Space2
517fa4c
import gradio as gr
import cv2
import torch
import utils
import datetime
import time
import psutil
from imwatermark import WatermarkEncoder
import numpy as np
from PIL import Image
from diffusers import EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
start_time = time.time()
is_colab = utils.is_google_colab()
#wm = "SDV2"
#wm_encoder = WatermarkEncoder()
#wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
#def put_watermark(img, wm_encoder=None):
# if wm_encoder is not None:
# img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# img = wm_encoder.encode(img, 'dwtDct')
# img = Image.fromarray(img[:, :, ::-1])
# return img
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Future Diffusion", "nitrosocke/Future-Diffusion", "future style")
]
# Model("Ghibli Diffusion", "nitrosocke/Ghibli-Diffusion", "ghibli style"),
# Model("Redshift Diffusion", "nitrosocke/Redshift-Diffusion", "redshift style"),
# Model("Nitro Diffusion", "nitrosocke/Nitro-Diffusion", "archer arcane modern disney"),
scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
#scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
custom_model = None
if is_colab:
models.insert(1, Model("Custom model"))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[0] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
else: # download all models
print(f"{datetime.datetime.now()} Downloading vae...")
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
#vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
for model in models:
try:
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, torch_dtype=torch.float16, scheduler=scheduler)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, torch_dtype=torch.float16, scheduler=scheduler)
except Exception as e:
print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
models.remove(model)
pipe = models[0].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
print(psutil.virtual_memory()) # print memory usage
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
try:
if img is not None:
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
else:
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator), None
except Exception as e:
return None, error_str(e)
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "txt2img"
prompt = f"{current_model.prefix} {prompt}"
results = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return results.images[0]
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "img2img"
prompt = f"{current_model.prefix} {prompt}"
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
results = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return results.images[0]
def replace_nsfw_images(results):
if is_colab:
return results.images[0]
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="diffusion-spave-div">
<div>
<h1>Diffusion Space</h1>
</div>
<p>
Demo for Nitrosocke's fine-tuned models.
</p>
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/drive/1Yr2QvQcqLHlApoQHDPzZmKREizVm9iZw"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
<p>You can also duplicate this space and upgrade to gpu by going to settings: <a style="display:inline-block" href="https://huggingface.co/spaces/nitrosocke/Diffusion_Space?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(label="Custom model path", placeholder="nitrosocke/Future-Diffusion", interactive=False)
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7, maximum=15, step=1)
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=30, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=64)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=64)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
if is_colab:
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples([
[models[0].name, "city scene at night intricate street level", "blurry fog soft", 7, 20],
[models[0].name, "beautiful female cyborg sitting in a cafe close up", "bad anatomy bad eyes blurry soft", 7, 20],
[models[0].name, "cyborg dog neon eyes", "extra mouth extra legs blurry soft bloom bad anatomy", 7, 20],
], inputs=[model_name, prompt, neg_prompt, guidance, steps, seed], outputs=outputs, fn=inference, cache_examples=False)
gr.HTML("""
<div style="border-top: 1px solid #303030;">
<br>
<p>Model by Nitrosocke.</p>
</div>
""")
print(f"Space built in {time.time() - start_time:.2f} seconds")
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)