Spaces:
Runtime error
Runtime error
File size: 12,418 Bytes
6e20537 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import imageio
import numpy as np
import argparse
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from diffusers import StableDiffusionPipeline
import trimesh
state = ""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
def set_state(s):
print(s)
global state
state = s
def get_state():
return state
def load_img2mesh_model(model_name):
set_state(f'Creating img2mesh model {model_name}...')
i2m_name = model_name
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
i2m_model.eval()
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])
set_state(f'Downloading img2mesh checkpoint {model_name}...')
i2m_model.load_state_dict(load_checkpoint(i2m_name, device))
return i2m_model, base_diffusion_i2m
def get_sampler(model_name, txt2obj, guidance_scale):
if txt2obj:
set_state('Creating txt2mesh model...')
t2m_name = 'base40M-textvec'
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
t2m_model.eval()
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])
set_state('Downloading txt2mesh checkpoint...')
t2m_model.load_state_dict(load_checkpoint(t2m_name, device))
else:
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name)
set_state('Creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
set_state('Downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
return PointCloudSampler(
device=device,
models=[t2m_model if txt2obj else i2m_model, upsampler_model],
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
)
def generate_txt2img(prompt):
pipe = StableDiffusionPipeline.from_pretrained("point_e_model_cache/stable-diffusion-2-1", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(prompt).images[0]
return image
def generate_3D(input, model_name='base1B', guidance_scale=3.0, grid_size=128):
set_state('Entered generate function...')
# try:
# input = Image.fromarray(input)
# except:
# img = generate_txt2img(input)
# img.save('/tmp/img.png')
# input = Image.open('/tmp/img.png')
if isinstance(input, Image.Image):
input = prepare_img(input)
# if input is a string, it's a text prompt
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)
# Produce a sample from the model.
set_state('Sampling...')
samples = None
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
samples = x
set_state('Converting to point cloud...')
pc = sampler.output_to_point_clouds(samples)[0]
set_state('Converting to mesh...')
save_ply(pc, '/tmp/mesh.ply', grid_size)
set_state('')
return ply_to_glb('/tmp/mesh.ply', '/tmp/mesh.glb'), create_gif(pc), gr.update(value=['/tmp/mesh.glb', '/tmp/mesh.ply'], visible=True)
def prepare_img(img):
w, h = img.size
if w > h:
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
else:
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))
# resize to 256x256
img = img.resize((256, 256))
return img
def ply_to_glb(ply_file, glb_file):
mesh = trimesh.load(ply_file)
# Save the mesh as a glb file using Trimesh
mesh.export(glb_file, file_type='glb')
return glb_file
def save_ply(pc, file_name, grid_size):
set_state('Creating SDF model...')
sdf_name = 'sdf'
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
sdf_model.eval()
set_state('Loading SDF model...')
sdf_model.load_state_dict(load_checkpoint(sdf_name, device))
# Produce a mesh (with vertex colors)
mesh = marching_cubes_mesh(
pc=pc,
model=sdf_model,
batch_size=4096,
grid_size=grid_size, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open(file_name, 'wb') as f:
mesh.write_ply(f)
def create_gif(pc):
fig = plt.figure(facecolor='black', figsize=(4, 4))
ax = fig.add_subplot(111, projection='3d', facecolor='black')
fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75))
# Create an empty list to store the frames
frames = []
# Create a loop to generate the frames for the GIF
for angle in range(0, 360, 4):
# Clear the plot and plot the point cloud
ax.clear()
color_args = np.stack(
[pc.channels["R"], pc.channels["G"], pc.channels["B"]], axis=-1
)
c = pc.coords
ax.scatter(c[:, 0], c[:, 1], c[:, 2], c=color_args)
# Set the viewpoint for the plot
ax.view_init(elev=10, azim=angle)
# Turn off the axis labels and ticks
ax.axis('off')
ax.set_xlim3d(fixed_bounds[0][0], fixed_bounds[1][0])
ax.set_ylim3d(fixed_bounds[0][1], fixed_bounds[1][1])
ax.set_zlim3d(fixed_bounds[0][2], fixed_bounds[1][2])
# Draw the figure to update the image data
fig.canvas.draw()
# Save the plot as a frame for the GIF
frame = np.array(fig.canvas.renderer.buffer_rgba())
w, h = frame.shape[0], frame.shape[1]
i = int(round((h - int(h*0.6)) / 2.))
frame = frame[i:i + int(h*0.6),i:i + int(h*0.6)]
frames.append(frame)
# Save the GIF using imageio
imageio.mimsave('/tmp/pointcloud.mp4', frames, fps=30)
return '/tmp/pointcloud.mp4'
block = gr.Blocks().queue(max_size=250, concurrency_count=6)
with block:
with gr.Box():
if(not torch.cuda.is_available()):
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/images/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Point-E Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/point-e?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Generate 3D Assets in 2 minutes with a prompt or image!
Based on the <a href="https://github.com/openai/point-e">Point-E</a> implementation
</p>
<br />
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the training below. Other GPUs are not compatible for now. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/images/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Point-E Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/point-e?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Generate 3D Assets in 2 minutes with a prompt or image!
Based on the <a href="https://github.com/openai/point-e">Point-E</a> implementation
</p>
</div>
''')
with gr.Row():
with gr.Column():
with gr.Tab("Image to 3D"):
gr.Markdown("Best results with images of objects on an empty background.")
input_image = gr.Image(label="Image")
img_button = gr.Button(label="Generate")
with gr.Tab("Text to 3D"):
gr.Markdown("Uses Stable Diffusion to create an image from the prompt.")
prompt = gr.Textbox(label="Prompt", placeholder="A HD photo of a Corgi")
text_button = gr.Button(label="Generate")
with gr.Accordion("Advanced options", open=False):
model = gr.Radio(["base40M", "base300M", "base1B"], label="Model", value="base1B")
scale = gr.Slider(
label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
)
with gr.Column():
model_gif = gr.Video(label="3D Model GIF")
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
model_3d = gr.Model3D(value=None)
file_out = gr.File(label="Files", visible=False)
if torch.cuda.is_available():
gr.Examples(
examples=[
["images/pumpkin.png"],
["images/fantasy_world.png"],
],
inputs=[input_image],
outputs=[model_3d, model_gif, file_out],
fn=generate_3D,
cache_examples=True
)
img_button.click(fn=generate_3D, inputs=[input_image, model, scale], outputs=[model_3d, model_gif, file_out])
text_button.click(fn=generate_3D, inputs=[prompt, model, scale], outputs=[model_3d, model_gif, file_out])
block.launch(show_api=False)
|