Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,758 Bytes
b2b8bd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import torch
import spaces
import gradio as gr
from pytube import YouTube
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "MohamedRashad/Arabic-Whisper-CodeSwitching-Edition"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000*3
YT_LENGTH_LIMIT_S = 60*60*3 # limit to 3 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
device=device,
)
@spaces.GPU(120)
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "arabic"}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = YouTube(yt_url).video_id
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
yt = YouTube(yt_url)
if yt.length > YT_LENGTH_LIMIT_S:
raise gr.Error("YouTube video is too long! Please upload a video that is less than 1 hour long.")
stream = yt.streams.filter(only_audio=True).first()
stream.download(filename=filename)
def seconds_to_timestamp(seconds):
total_seconds = int(seconds)
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
remaining_seconds = seconds % 60
return f"{hours:02d}:{minutes:02d}:{remaining_seconds:06.3f}"
def chunks_to_subtitle(chunks):
subtitle = ""
for chunk in chunks:
start = seconds_to_timestamp(chunk["timestamp"][0])
end = seconds_to_timestamp(chunk["timestamp"][1])
text = chunk["text"]
subtitle += f"{start} --> {end}\n{text}\n\n"
return subtitle
@spaces.GPU(120)
def yt_transcribe(yt_url):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
output = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "arabic"}, return_timestamps=True)
subtitle = chunks_to_subtitle(output["chunks"])
return html_embed_str, subtitle
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe_demo = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["html", "text"],
title="Whisper Large V3: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe_demo], ["Microphone", "Audio file", "YouTube"])
demo.queue().launch(share=True)
|