Flux-Redux / app.py
MohamedRashad's picture
chore: Update FLUX pipeline to include live preview functionality
457f149
raw
history blame
4.7 kB
import gradio as gr
import spaces
import torch
from gradio_client import Client, handle_file
from colorama import Fore, Style
from diffusers import AutoPipelineForImage2Image
from PIL import Image
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
joy_client = Client("fancyfeast/joy-caption-alpha-two")
qwen_client = Client("Qwen/Qwen2.5-72B-Instruct")
pipeline = AutoPipelineForImage2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipeline.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipeline)
lora_ids = {
"Realism": "XLabs-AI/flux-RealismLora",
"Cartoonism": "aleksa-codes/flux-ghibsky-illustration",
}
def load_lora(lora_name):
print(f"Loading LoRA model: {lora_name}")
global pipeline
pipeline.unload_lora_weights()
pipeline.load_lora_weights(lora_ids[lora_name])
pipeline.enable_model_cpu_offload()
print(f"{Fore.GREEN}LoRA model loaded{Style.RESET_ALL}")
def describe_image(image_path):
print(f"Describing image: {image_path}")
image_description = joy_client.predict(
input_image=handle_file(image_path),
caption_type="Descriptive",
caption_length="long",
extra_options=[],
name_input="",
custom_prompt="",
api_name="/stream_chat"
)[-1]
print(f"{Fore.GREEN}{image_description}{Style.RESET_ALL}")
return image_description
def refine_prompt(image_description):
print(f"Improving prompt: {image_description}")
qwen_prompt = f"""This is the description of the image: {image_description}
And those some good AI Art Prompts:
- a cat on a windowsill gazing out at a starry night sky and distant city lights
- a fisherman casting a line into a peaceful village lake surrounded by quaint cottages
- cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows
- Mykonos
- an orange Lamborghini driving down a hill road at night with a beautiful ocean view in the background, side view, no text
- a small Yorkie on a windowsill during a snowy winter night, with a warm, cozy glow from inside and soft snowflakes drifting outside
- serene Japanese garden with a koi pond and a traditional tea house, nestled under a canopy of cherry blossoms in full bloom
- the most beautiful place in the universe
Based on what i gave you, Write a great short AI Art Prompt for me that is based on the image description above (Don't write anything else, just the prompt)
"""
refined_prompt = qwen_client.predict(
query=qwen_prompt,
history=[],
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
api_name="/model_chat"
)[1][0][-1]
print(f"{Fore.GREEN}{refined_prompt}{Style.RESET_ALL}")
return refined_prompt
@spaces.GPU
def img2img_infer(image_path, image_description):
pil_image = Image.open(image_path)
width, height = pil_image.size
for enhanced_image in pipeline.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=f'GHIBSKY style, {image_description}',
guidance_scale=3.5,
num_inference_steps=28,
width=1024,
height=1024,
generator=torch.Generator("cpu").manual_seed(0),
output_type="pil",
):
yield enhanced_image.resize((width, height))
with gr.Blocks(title="Magnific") as demo:
gr.HTML("<center><h1>Magnific</h1></center>")
gr.Markdown("This space is an attempt at replicating the functionality of the [Magnific](https://magnific.ai/) service.")
with gr.Row():
with gr.Column():
image_path = gr.Image(label="Image", type="filepath")
lora_dropdown = gr.Dropdown(label="LoRA Model", choices=list(lora_ids.keys()), value=None)
describe_btn = gr.Button(value="Describe Image", variant="primary")
with gr.Row(equal_height=True):
image_description = gr.Textbox(label="Image Description", scale=4)
refine_prompt_btn = gr.Button(value="Refine", variant="primary", scale=1)
submit_btn = gr.Button(value="Submit", variant="primary")
enhanced_image = gr.Image(label="Enhanced Image", type="pil")
lora_dropdown.change(load_lora, inputs=lora_dropdown)
refine_prompt_btn.click(refine_prompt, inputs=image_description, outputs=image_description)
describe_btn.click(describe_image, inputs=image_path, outputs=image_description)
submit_btn.click(img2img_infer, inputs=[image_path, image_description], outputs=enhanced_image)
demo.queue().launch(share=False)