File size: 8,754 Bytes
f9a674e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
import numpy as np
import random
from dataset.concat_dataset import ConCatDataset #, collate_fn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import  DistributedSampler
import os 
from tqdm import tqdm
from distributed import get_rank, synchronize, get_world_size
from trainer import read_official_ckpt, batch_to_device, ImageCaptionSaver, wrap_loader #, get_padded_boxes
from PIL import Image
import math
import json


def draw_masks_from_boxes(boxes,size):

    image_masks = [] 
    for box in boxes:
        image_mask = torch.ones(size[0],size[1])
        for bx in box:
            x0, x1 = bx[0]*size[0], bx[2]*size[0]
            y0, y1 = bx[1]*size[1], bx[3]*size[1]
            image_mask[int(y0):int(y1), int(x0):int(x1)] = 0 
        image_masks.append(image_mask)
    return torch.stack(image_masks).unsqueeze(1)
        


def set_alpha_scale(model, alpha_scale):
    from ldm.modules.attention import GatedCrossAttentionDense, GatedSelfAttentionDense
    for module in model.modules():
        if type(module) == GatedCrossAttentionDense or type(module) == GatedSelfAttentionDense:
            module.scale = alpha_scale
            # print("scale:   ", alpha_scale)
            # print("attn:  ", module.alpha_attn)
            # print("dense:   ", module.alpha_dense)
            # print('  ')
            # print('  ')


def save_images(samples, image_ids, folder, to256):
    for sample, image_id in zip(samples, image_ids):
        sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
        sample = sample.cpu().numpy().transpose(1,2,0) * 255 
        img_name = str(int(image_id))+'.png'
        img = Image.fromarray(sample.astype(np.uint8))
        if to256:
            img = img.resize( (256,256), Image.BICUBIC)
        img.save(os.path.join(folder,img_name))


def ckpt_to_folder_name(basename):
    name=""
    for s in basename:
        if s.isdigit():
            name+=s
    seen = round( int(name)/1000, 1 )
    return str(seen).ljust(4,'0')+'k'


class Evaluator:
    def __init__(self, config):

        self.config = config
        self.device = torch.device("cuda")
     

        # = = = = = create model and diffusion = = = = = #
        if self.config.ckpt != "real":

            self.model = instantiate_from_config(config.model).to(self.device)
            self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
            self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
            self.diffusion = instantiate_from_config(config.diffusion).to(self.device)

            # donot need to load official_ckpt for self.model here, since we will load from our ckpt
            state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name)  )
            self.autoencoder.load_state_dict( state_dict["autoencoder"]  )
            self.text_encoder.load_state_dict( state_dict["text_encoder"]  )
            self.diffusion.load_state_dict( state_dict["diffusion"]  )


        # = = = = = load from our ckpt = = = = = #
        if self.config.ckpt == "real":
            print("Saving all real images...")
            self.just_save_real = True 
        else:
            checkpoint = torch.load(self.config.ckpt, map_location="cpu")
            which_state = 'ema' if 'ema' in checkpoint else "model"
            which_state = which_state if config.which_state is None else config.which_state
            self.model.load_state_dict(checkpoint[which_state])
            print("ckpt is loaded")
            self.just_save_real = False
            set_alpha_scale(self.model, self.config.alpha_scale)

            self.autoencoder.eval()
            self.model.eval()
            self.text_encoder.eval()
        

        # = = = = = create data = = = = = #
        self.dataset_eval = ConCatDataset(config.val_dataset_names, config.DATA_ROOT, config.which_embedder, train=False)
        print("total eval images: ", len(self.dataset_eval))
        sampler = DistributedSampler(self.dataset_eval,shuffle=False) if config.distributed else None
        loader_eval = DataLoader( self.dataset_eval,batch_size=config.batch_size, 
                                                    num_workers=config.workers, 
                                                    pin_memory=True, 
                                                    sampler=sampler,
                                                    drop_last=False) # shuffle default is False
        self.loader_eval = loader_eval
        

        # = = = = = create output folder = = = = = #
        folder_name = ckpt_to_folder_name(os.path.basename(config.ckpt))
        self.outdir = os.path.join(config.OUTPUT_ROOT, folder_name)
        self.outdir_real = os.path.join(self.outdir,'real')
        self.outdir_fake = os.path.join(self.outdir,'fake')
        if config.to256:
            self.outdir_real256 = os.path.join(self.outdir,'real256')
            self.outdir_fake256 = os.path.join(self.outdir,'fake256')
        synchronize() # if rank0 is faster, it may mkdir before the other rank call os.listdir()
        if get_rank() == 0:
            os.makedirs(self.outdir, exist_ok=True)
            os.makedirs(self.outdir_real, exist_ok=True)
            os.makedirs(self.outdir_fake, exist_ok=True)
            if config.to256:
                os.makedirs(self.outdir_real256, exist_ok=True)
                os.makedirs(self.outdir_fake256, exist_ok=True)
        print(self.outdir) # double check 

        self.evaluation_finished = False
        if os.path.exists(  os.path.join(self.outdir,'score.txt')  ):
            self.evaluation_finished = True 
            

    def alread_saved_this_batch(self, batch):
        existing_real_files = os.listdir( self.outdir_real  )
        existing_fake_files = os.listdir( self.outdir_fake  )
        status = []
        for image_id in batch["id"]:
            img_name = str(int(image_id))+'.png'
            status.append(img_name in existing_real_files)
            status.append(img_name in existing_fake_files)
        return all(status)


    @torch.no_grad()
    def start_evaluating(self):

        iterator = tqdm( self.loader_eval, desc='Evaluating progress')   
        for batch in iterator:

            #if not self.alread_saved_this_batch(batch):
            if True:

                batch_to_device(batch, self.device)
                batch_size = batch["image"].shape[0]
                samples_real = batch["image"]

                if self.just_save_real:                    
                    samples_fake = None
                else:
                    uc = self.text_encoder.encode( batch_size*[""] )
                    context = self.text_encoder.encode(  batch["caption"]  )
                
                    image_mask = x0 = None 
                    if self.config.inpaint:
                        image_mask = draw_masks_from_boxes( batch['boxes'], self.model.image_size  ).cuda()
                        x0 = self.autoencoder.encode( batch["image"] )

                    shape = (batch_size, self.model.in_channels, self.model.image_size, self.model.image_size)
                    if self.config.no_plms:
                        sampler = DDIMSampler(self.diffusion, self.model)
                        steps = 250 
                    else:
                        sampler = PLMSSampler(self.diffusion, self.model)
                        steps = 50 

                    input = dict( x=None, timesteps=None, context=context, boxes=batch['boxes'], masks=batch['masks'], positive_embeddings=batch["positive_embeddings"] )
                    samples_fake = sampler.sample(S=steps, shape=shape, input=input,  uc=uc, guidance_scale=self.config.guidance_scale, mask=image_mask, x0=x0)
                    samples_fake = self.autoencoder.decode(samples_fake)


                save_images(samples_real, batch['id'], self.outdir_real, to256=False )
                if self.config.to256:
                    save_images(samples_real, batch['id'], self.outdir_real256, to256=True )

                if samples_fake is not None:
                    save_images(samples_fake, batch['id'], self.outdir_fake, to256=False )
                    if self.config.to256:
                        save_images(samples_fake, batch['id'], self.outdir_fake256, to256=True )


    def fire_fid(self):
        paths = [self.outdir_real, self.outdir_fake]
        if self.config.to256:
            paths = [self.outdir_real256, self.outdir_fake256]