File size: 11,279 Bytes
f9a674e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c79044
f9a674e
 
 
 
5c79044
 
 
 
 
 
 
 
f9a674e
 
 
 
 
5c79044
f9a674e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
087de09
f9a674e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
087de09
f9a674e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
from PIL import Image, ImageDraw
from evaluator import Evaluator
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import os 
from transformers import CLIPProcessor, CLIPModel
from copy import deepcopy
import torch 
from ldm.util import instantiate_from_config
from trainer import read_official_ckpt, batch_to_device
from evaluator import set_alpha_scale, save_images, draw_masks_from_boxes
import numpy as np
import clip 
from functools import partial
import torchvision.transforms.functional as F
import random


device = "cuda"


def alpha_generator(length, type=[1,0,0]):
    """
    length is total timestpes needed for sampling. 
    type should be a list containing three values which sum should be 1
    
    It means the percentage of three stages: 
    alpha=1 stage 
    linear deacy stage 
    alpha=0 stage. 
    
    For example if length=100, type=[0.8,0.1,0.1]
    then the first 800 stpes, alpha will be 1, and then linearly decay to 0 in the next 100 steps,
    and the last 100 stpes are 0.    
    """
    
    assert len(type)==3 
    assert type[0] + type[1] + type[2] == 1
    
    stage0_length = int(type[0]*length)
    stage1_length = int(type[1]*length)
    stage2_length = length - stage0_length - stage1_length
    
    if stage1_length != 0: 
        decay_alphas = np.arange(start=0, stop=1, step=1/stage1_length)[::-1]
        decay_alphas = list(decay_alphas)
    else:
        decay_alphas = []
        
    
    alphas = [1]*stage0_length + decay_alphas + [0]*stage2_length
    
    assert len(alphas) == length
    
    return alphas


def draw_box(img, locations):
    colors = ["red", "green", "blue", "olive", "orange", "brown", "cyan", "purple"]
    draw = ImageDraw.Draw(img)
    WW,HH = img.size
    for bid, box in enumerate(locations):
        draw.rectangle([box[0]*WW, box[1]*HH, box[2]*WW, box[3]*HH], outline =colors[bid % len(colors)], width=5)
    return img 

def load_common_ckpt(config, common_ckpt):
    autoencoder = instantiate_from_config(config.autoencoder).to(device).eval()
    text_encoder = instantiate_from_config(config.text_encoder).to(device).eval()
    diffusion = instantiate_from_config(config.diffusion).to(device)

    autoencoder.load_state_dict( common_ckpt["autoencoder"]  )
    text_encoder.load_state_dict( common_ckpt["text_encoder"]  )
    diffusion.load_state_dict( common_ckpt["diffusion"]  )

    return [autoencoder, text_encoder, diffusion]

def load_ckpt(config, state_dict, common_instances):
    model = instantiate_from_config(config.model).to(device).eval()

    model.load_state_dict(state_dict['model'])
    set_alpha_scale(model, config.alpha_scale)
    print("ckpt is loaded")

    return [model] + common_instances




def project(x, projection_matrix):
    """
    x (Batch*768) should be the penultimate feature of CLIP (before projection)
    projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer 
    defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.  
    this function will return the CLIP feature (without normalziation)
    """
    return [email protected](projection_matrix, 0, 1)


def get_clip_feature(model, processor, input, is_image=False):
    feature_type = ['before','after_reproject'] # text feature, image feature 

    if is_image:
        image = input #Image.open(input).convert("RGB")
        inputs = processor(images=[image],  return_tensors="pt", padding=True)
        inputs['pixel_values'] = inputs['pixel_values'].cuda() # we use our own preprocessing without center_crop 
        inputs['input_ids'] = torch.tensor([[0,1,2,3]]).cuda()  # placeholder
        outputs = model(**inputs)
        feature = outputs.image_embeds 
        if feature_type[1] == 'after_renorm':
            feature = feature*28.7
        if feature_type[1] == 'after_reproject':
            feature = project( feature, torch.load('gligen/projection_matrix.pth').cuda().T ).squeeze(0)
            feature = ( feature / feature.norm() )  * 28.7 
            feature = feature.unsqueeze(0)
    else:
        inputs = processor(text=input,  return_tensors="pt", padding=True)
        inputs['input_ids'] = inputs['input_ids'].cuda()
        inputs['pixel_values'] = torch.ones(1,3,224,224).cuda() # placeholder 
        inputs['attention_mask'] = inputs['attention_mask'].cuda()
        outputs = model(**inputs)
        feature = outputs.text_embeds if feature_type[0] == 'after' else outputs.text_model_output.pooler_output
    return feature



def complete_mask(has_mask, max_objs):
    mask = torch.ones(1,max_objs)
    if type(has_mask) == int or type(has_mask) == float:
        return mask * has_mask
    else:
        for idx, value in enumerate(has_mask):
            mask[0,idx] = value
        return mask



@torch.no_grad()
def fire_clip(text_encoder, meta, batch=1, max_objs=30, clip_model=None):
    phrases = meta["phrases"]
    images = meta["images"]

    if clip_model is None:
        version = "openai/clip-vit-large-patch14"
        model = CLIPModel.from_pretrained(version).cuda()
        processor = CLIPProcessor.from_pretrained(version)
    else:
        version = "openai/clip-vit-large-patch14"
        assert clip_model['version'] == version
        model = clip_model['model']
        processor = clip_model['processor']

    boxes = torch.zeros(max_objs, 4)
    masks = torch.zeros(max_objs)
    text_embeddings = torch.zeros(max_objs, 768)
    image_embeddings = torch.zeros(max_objs, 768)

    
    text_features = []
    image_features = []
    for phrase, image in zip(phrases,images):
        text_features.append(  get_clip_feature(model, processor, phrase, is_image=False) )
        image_features.append( get_clip_feature(model, processor, image,  is_image=True) )
    
    if len(text_features) > 0:
        text_features = torch.cat(text_features, dim=0)
        image_features = torch.cat(image_features, dim=0)

        for idx, (box, text_feature, image_feature) in enumerate(zip( meta['locations'], text_features, image_features)):
            boxes[idx] = torch.tensor(box)
            masks[idx] = 1
            text_embeddings[idx] = text_feature
            image_embeddings[idx] = image_feature
    
    
    out = {
        "boxes" : boxes.unsqueeze(0).repeat(batch,1,1),
        "masks" : masks.unsqueeze(0).repeat(batch,1),
        "text_masks" : masks.unsqueeze(0).repeat(batch,1)*complete_mask( meta["has_text_mask"], max_objs ),
        "image_masks" : masks.unsqueeze(0).repeat(batch,1)*complete_mask( meta["has_image_mask"], max_objs ),
        "text_embeddings"  : text_embeddings.unsqueeze(0).repeat(batch,1,1),
        "image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1)
    }
    return batch_to_device(out, device) 





@torch.no_grad()
def grounded_generation_box(loaded_model_list, instruction, *args, **kwargs):
    
    # -------------- prepare model and misc --------------- # 
    model, autoencoder, text_encoder, diffusion = loaded_model_list
    batch_size = instruction["batch_size"]
    is_inpaint = True if "input_image" in instruction else False
    save_folder = os.path.join("create_samples", instruction["save_folder_name"])


    # -------------- set seed if required --------------- # 
    if instruction.get('fix_seed', False):
        random_seed = instruction['rand_seed']
        random.seed(random_seed)
        np.random.seed(random_seed)
        torch.manual_seed(random_seed)

    # ------------- prepare input for the model ------------- #
    batch = fire_clip(text_encoder, instruction, batch_size, clip_model=kwargs.get('clip_model', None))
    context = text_encoder.encode(  [instruction["prompt"]]*batch_size  )
    uc = text_encoder.encode( batch_size*[""] )
    # print(batch['boxes'])
    input = dict(x = None, 
                timesteps = None, 
                context = context, 
                boxes = batch['boxes'], 
                masks = batch['masks'], 
                text_masks = batch['text_masks'],
                image_masks = batch['image_masks'], 
                text_embeddings = batch["text_embeddings"], 
                image_embeddings = batch["image_embeddings"] )

    inpainting_mask = x0 = None # used for inpainting
    if is_inpaint:       
        input_image = F.pil_to_tensor(  instruction["input_image"] ) 
        input_image = ( input_image.float().unsqueeze(0).cuda() / 255 - 0.5 ) / 0.5
        x0 = autoencoder.encode( input_image )
        if instruction["actual_mask"] is not None:
            inpainting_mask = instruction["actual_mask"][None, None].expand(batch['boxes'].shape[0], -1, -1, -1).cuda()
        else:
            # inpainting_mask = draw_masks_from_boxes( batch['boxes'], (x0.shape[-2], x0.shape[-1])  ).cuda()
            actual_boxes = [instruction['inpainting_boxes_nodrop'] for _ in range(batch['boxes'].shape[0])]
            inpainting_mask = draw_masks_from_boxes(actual_boxes, (x0.shape[-2], x0.shape[-1])  ).cuda()
        # extra input for the model 
        masked_x0 = x0*inpainting_mask
        inpainting_extra_input = torch.cat([masked_x0,inpainting_mask], dim=1)
        input["inpainting_extra_input"] = inpainting_extra_input


    # ------------- prepare sampler ------------- #
    alpha_generator_func = partial(alpha_generator, type=instruction["alpha_type"])
    if False:
        sampler = DDIMSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
        steps = 250 
    else:
        sampler = PLMSSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
        steps = 50 

    # ------------- run sampler ... ------------- #
    shape = (batch_size, model.in_channels, model.image_size, model.image_size)
    samples_fake = sampler.sample(S=steps, shape=shape, input=input,  uc=uc, guidance_scale=instruction['guidance_scale'], mask=inpainting_mask, x0=x0)
    samples_fake = autoencoder.decode(samples_fake)


    # ------------- other logistics ------------- #

    sample_list = []
    for sample in samples_fake:
        sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
        sample = sample.cpu().numpy().transpose(1,2,0) * 255 
        sample = Image.fromarray(sample.astype(np.uint8))
        sample_list.append(sample)

    return sample_list, None
        


# if __name__ == "__main__":
    

#     parser = argparse.ArgumentParser()
#     parser.add_argument("--folder", type=str,  default="create_samples", help="path to OUTPUT")
#     parser.add_argument("--official_ckpt", type=str,  default='../../../data/sd-v1-4.ckpt', help="")

#     parser.add_argument("--batch_size", type=int, default=10, help="This will overwrite the one in yaml.")
#     parser.add_argument("--no_plms", action='store_true')
#     parser.add_argument("--guidance_scale", type=float,  default=5, help="")
#     parser.add_argument("--alpha_scale", type=float,  default=1, help="scale tanh(alpha). If 0, the behaviour is same as original model")
#     args = parser.parse_args()

#     assert "sd-v1-4.ckpt" in args.official_ckpt, "only support for stable-diffusion model"


#     grounded_generation(args)