Spaces:
Runtime error
Runtime error
File size: 11,279 Bytes
f9a674e 5c79044 f9a674e 5c79044 f9a674e 5c79044 f9a674e 087de09 f9a674e 087de09 f9a674e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import argparse
from PIL import Image, ImageDraw
from evaluator import Evaluator
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import os
from transformers import CLIPProcessor, CLIPModel
from copy import deepcopy
import torch
from ldm.util import instantiate_from_config
from trainer import read_official_ckpt, batch_to_device
from evaluator import set_alpha_scale, save_images, draw_masks_from_boxes
import numpy as np
import clip
from functools import partial
import torchvision.transforms.functional as F
import random
device = "cuda"
def alpha_generator(length, type=[1,0,0]):
"""
length is total timestpes needed for sampling.
type should be a list containing three values which sum should be 1
It means the percentage of three stages:
alpha=1 stage
linear deacy stage
alpha=0 stage.
For example if length=100, type=[0.8,0.1,0.1]
then the first 800 stpes, alpha will be 1, and then linearly decay to 0 in the next 100 steps,
and the last 100 stpes are 0.
"""
assert len(type)==3
assert type[0] + type[1] + type[2] == 1
stage0_length = int(type[0]*length)
stage1_length = int(type[1]*length)
stage2_length = length - stage0_length - stage1_length
if stage1_length != 0:
decay_alphas = np.arange(start=0, stop=1, step=1/stage1_length)[::-1]
decay_alphas = list(decay_alphas)
else:
decay_alphas = []
alphas = [1]*stage0_length + decay_alphas + [0]*stage2_length
assert len(alphas) == length
return alphas
def draw_box(img, locations):
colors = ["red", "green", "blue", "olive", "orange", "brown", "cyan", "purple"]
draw = ImageDraw.Draw(img)
WW,HH = img.size
for bid, box in enumerate(locations):
draw.rectangle([box[0]*WW, box[1]*HH, box[2]*WW, box[3]*HH], outline =colors[bid % len(colors)], width=5)
return img
def load_common_ckpt(config, common_ckpt):
autoencoder = instantiate_from_config(config.autoencoder).to(device).eval()
text_encoder = instantiate_from_config(config.text_encoder).to(device).eval()
diffusion = instantiate_from_config(config.diffusion).to(device)
autoencoder.load_state_dict( common_ckpt["autoencoder"] )
text_encoder.load_state_dict( common_ckpt["text_encoder"] )
diffusion.load_state_dict( common_ckpt["diffusion"] )
return [autoencoder, text_encoder, diffusion]
def load_ckpt(config, state_dict, common_instances):
model = instantiate_from_config(config.model).to(device).eval()
model.load_state_dict(state_dict['model'])
set_alpha_scale(model, config.alpha_scale)
print("ckpt is loaded")
return [model] + common_instances
def project(x, projection_matrix):
"""
x (Batch*768) should be the penultimate feature of CLIP (before projection)
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
this function will return the CLIP feature (without normalziation)
"""
return [email protected](projection_matrix, 0, 1)
def get_clip_feature(model, processor, input, is_image=False):
feature_type = ['before','after_reproject'] # text feature, image feature
if is_image:
image = input #Image.open(input).convert("RGB")
inputs = processor(images=[image], return_tensors="pt", padding=True)
inputs['pixel_values'] = inputs['pixel_values'].cuda() # we use our own preprocessing without center_crop
inputs['input_ids'] = torch.tensor([[0,1,2,3]]).cuda() # placeholder
outputs = model(**inputs)
feature = outputs.image_embeds
if feature_type[1] == 'after_renorm':
feature = feature*28.7
if feature_type[1] == 'after_reproject':
feature = project( feature, torch.load('gligen/projection_matrix.pth').cuda().T ).squeeze(0)
feature = ( feature / feature.norm() ) * 28.7
feature = feature.unsqueeze(0)
else:
inputs = processor(text=input, return_tensors="pt", padding=True)
inputs['input_ids'] = inputs['input_ids'].cuda()
inputs['pixel_values'] = torch.ones(1,3,224,224).cuda() # placeholder
inputs['attention_mask'] = inputs['attention_mask'].cuda()
outputs = model(**inputs)
feature = outputs.text_embeds if feature_type[0] == 'after' else outputs.text_model_output.pooler_output
return feature
def complete_mask(has_mask, max_objs):
mask = torch.ones(1,max_objs)
if type(has_mask) == int or type(has_mask) == float:
return mask * has_mask
else:
for idx, value in enumerate(has_mask):
mask[0,idx] = value
return mask
@torch.no_grad()
def fire_clip(text_encoder, meta, batch=1, max_objs=30, clip_model=None):
phrases = meta["phrases"]
images = meta["images"]
if clip_model is None:
version = "openai/clip-vit-large-patch14"
model = CLIPModel.from_pretrained(version).cuda()
processor = CLIPProcessor.from_pretrained(version)
else:
version = "openai/clip-vit-large-patch14"
assert clip_model['version'] == version
model = clip_model['model']
processor = clip_model['processor']
boxes = torch.zeros(max_objs, 4)
masks = torch.zeros(max_objs)
text_embeddings = torch.zeros(max_objs, 768)
image_embeddings = torch.zeros(max_objs, 768)
text_features = []
image_features = []
for phrase, image in zip(phrases,images):
text_features.append( get_clip_feature(model, processor, phrase, is_image=False) )
image_features.append( get_clip_feature(model, processor, image, is_image=True) )
if len(text_features) > 0:
text_features = torch.cat(text_features, dim=0)
image_features = torch.cat(image_features, dim=0)
for idx, (box, text_feature, image_feature) in enumerate(zip( meta['locations'], text_features, image_features)):
boxes[idx] = torch.tensor(box)
masks[idx] = 1
text_embeddings[idx] = text_feature
image_embeddings[idx] = image_feature
out = {
"boxes" : boxes.unsqueeze(0).repeat(batch,1,1),
"masks" : masks.unsqueeze(0).repeat(batch,1),
"text_masks" : masks.unsqueeze(0).repeat(batch,1)*complete_mask( meta["has_text_mask"], max_objs ),
"image_masks" : masks.unsqueeze(0).repeat(batch,1)*complete_mask( meta["has_image_mask"], max_objs ),
"text_embeddings" : text_embeddings.unsqueeze(0).repeat(batch,1,1),
"image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1)
}
return batch_to_device(out, device)
@torch.no_grad()
def grounded_generation_box(loaded_model_list, instruction, *args, **kwargs):
# -------------- prepare model and misc --------------- #
model, autoencoder, text_encoder, diffusion = loaded_model_list
batch_size = instruction["batch_size"]
is_inpaint = True if "input_image" in instruction else False
save_folder = os.path.join("create_samples", instruction["save_folder_name"])
# -------------- set seed if required --------------- #
if instruction.get('fix_seed', False):
random_seed = instruction['rand_seed']
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
# ------------- prepare input for the model ------------- #
batch = fire_clip(text_encoder, instruction, batch_size, clip_model=kwargs.get('clip_model', None))
context = text_encoder.encode( [instruction["prompt"]]*batch_size )
uc = text_encoder.encode( batch_size*[""] )
# print(batch['boxes'])
input = dict(x = None,
timesteps = None,
context = context,
boxes = batch['boxes'],
masks = batch['masks'],
text_masks = batch['text_masks'],
image_masks = batch['image_masks'],
text_embeddings = batch["text_embeddings"],
image_embeddings = batch["image_embeddings"] )
inpainting_mask = x0 = None # used for inpainting
if is_inpaint:
input_image = F.pil_to_tensor( instruction["input_image"] )
input_image = ( input_image.float().unsqueeze(0).cuda() / 255 - 0.5 ) / 0.5
x0 = autoencoder.encode( input_image )
if instruction["actual_mask"] is not None:
inpainting_mask = instruction["actual_mask"][None, None].expand(batch['boxes'].shape[0], -1, -1, -1).cuda()
else:
# inpainting_mask = draw_masks_from_boxes( batch['boxes'], (x0.shape[-2], x0.shape[-1]) ).cuda()
actual_boxes = [instruction['inpainting_boxes_nodrop'] for _ in range(batch['boxes'].shape[0])]
inpainting_mask = draw_masks_from_boxes(actual_boxes, (x0.shape[-2], x0.shape[-1]) ).cuda()
# extra input for the model
masked_x0 = x0*inpainting_mask
inpainting_extra_input = torch.cat([masked_x0,inpainting_mask], dim=1)
input["inpainting_extra_input"] = inpainting_extra_input
# ------------- prepare sampler ------------- #
alpha_generator_func = partial(alpha_generator, type=instruction["alpha_type"])
if False:
sampler = DDIMSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
steps = 250
else:
sampler = PLMSSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
steps = 50
# ------------- run sampler ... ------------- #
shape = (batch_size, model.in_channels, model.image_size, model.image_size)
samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=instruction['guidance_scale'], mask=inpainting_mask, x0=x0)
samples_fake = autoencoder.decode(samples_fake)
# ------------- other logistics ------------- #
sample_list = []
for sample in samples_fake:
sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
sample = sample.cpu().numpy().transpose(1,2,0) * 255
sample = Image.fromarray(sample.astype(np.uint8))
sample_list.append(sample)
return sample_list, None
# if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("--folder", type=str, default="create_samples", help="path to OUTPUT")
# parser.add_argument("--official_ckpt", type=str, default='../../../data/sd-v1-4.ckpt', help="")
# parser.add_argument("--batch_size", type=int, default=10, help="This will overwrite the one in yaml.")
# parser.add_argument("--no_plms", action='store_true')
# parser.add_argument("--guidance_scale", type=float, default=5, help="")
# parser.add_argument("--alpha_scale", type=float, default=1, help="scale tanh(alpha). If 0, the behaviour is same as original model")
# args = parser.parse_args()
# assert "sd-v1-4.ckpt" in args.official_ckpt, "only support for stable-diffusion model"
# grounded_generation(args)
|