Msp Raja commited on
Commit
7be4744
Β·
1 Parent(s): 3dab771
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. app.py +69 -39
  3. gitattributes +27 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py CHANGED
@@ -1,54 +1,71 @@
1
  import os
2
- os.system('pip install pyyaml==5.1')
 
3
  # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
4
- os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
 
 
5
 
6
  # install detectron2 that matches pytorch 1.8
7
  # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
8
- os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
 
 
9
 
10
  ## install PyTesseract
11
- os.system('pip install -q pytesseract')
12
 
13
  import gradio as gr
14
  import numpy as np
15
- from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
16
  from datasets import load_dataset
17
  from PIL import Image, ImageDraw, ImageFont
18
 
19
- processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
20
- model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
 
 
21
 
22
  # load image example
23
  dataset = load_dataset("nielsr/funsd", split="test")
24
  image = Image.open(dataset[0]["image_path"]).convert("RGB")
25
  image = Image.open("./invoice.png")
26
  image.save("document.png")
27
- # define id2label, label2color
28
- labels = dataset.features['ner_tags'].feature.names
29
  id2label = {v: k for v, k in enumerate(labels)}
30
- label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
 
 
 
 
 
 
31
 
32
  def unnormalize_box(bbox, width, height):
33
- return [
34
- width * (bbox[0] / 1000),
35
- height * (bbox[1] / 1000),
36
- width * (bbox[2] / 1000),
37
- height * (bbox[3] / 1000),
38
- ]
 
39
 
40
  def iob_to_label(label):
41
  label = label[2:]
42
  if not label:
43
- return 'other'
44
  return label
45
 
 
46
  def process_image(image):
47
  width, height = image.size
48
 
49
  # encode
50
- encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
51
- offset_mapping = encoding.pop('offset_mapping')
 
 
52
 
53
  # forward pass
54
  outputs = model(**encoding)
@@ -58,9 +75,15 @@ def process_image(image):
58
  token_boxes = encoding.bbox.squeeze().tolist()
59
 
60
  # only keep non-subword predictions
61
- is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
62
- true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
63
- true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
 
 
 
 
 
 
64
 
65
  # draw predictions over the image
66
  draw = ImageDraw.Draw(image)
@@ -68,29 +91,36 @@ def process_image(image):
68
  for prediction, box in zip(true_predictions, true_boxes):
69
  predicted_label = iob_to_label(prediction).lower()
70
  draw.rectangle(box, outline=label2color[predicted_label])
71
- draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
72
-
 
 
 
 
 
73
  return image
74
 
75
 
76
- title = "Interactive demo: LayoutLMv2"
77
- description = "Demo for Microsoft's LayoutLMv2, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
78
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.14740' target='_blank'>LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
79
- examples =[['document.png']]
80
 
81
  css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
82
- #css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
83
  # css = ".output_image, .input_image {height: 600px !important}"
84
 
85
  css = ".image-preview {height: auto !important;}"
86
 
87
- iface = gr.Interface(fn=process_image,
88
- inputs=gr.inputs.Image(type="pil"),
89
- outputs=gr.outputs.Image(type="pil", label="annotated image"),
90
- title=title,
91
- description=description,
92
- article=article,
93
- examples=examples,
94
- css=css,
95
- enable_queue=True)
96
- iface.launch(debug=True)
 
 
 
1
  import os
2
+
3
+ os.system("pip install pyyaml==5.1")
4
  # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
5
+ os.system(
6
+ "pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html"
7
+ )
8
 
9
  # install detectron2 that matches pytorch 1.8
10
  # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
11
+ os.system(
12
+ "pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html"
13
+ )
14
 
15
  ## install PyTesseract
16
+ os.system("pip install -q pytesseract")
17
 
18
  import gradio as gr
19
  import numpy as np
20
+ from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
21
  from datasets import load_dataset
22
  from PIL import Image, ImageDraw, ImageFont
23
 
24
+ processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
25
+ model = LayoutLMv3ForTokenClassification.from_pretrained(
26
+ "nielsr/layoutlmv3-finetuned-funsd"
27
+ )
28
 
29
  # load image example
30
  dataset = load_dataset("nielsr/funsd", split="test")
31
  image = Image.open(dataset[0]["image_path"]).convert("RGB")
32
  image = Image.open("./invoice.png")
33
  image.save("document.png")
34
+
35
+ labels = dataset.features["ner_tags"].feature.names
36
  id2label = {v: k for v, k in enumerate(labels)}
37
+ label2color = {
38
+ "question": "blue",
39
+ "answer": "green",
40
+ "header": "orange",
41
+ "other": "violet",
42
+ }
43
+
44
 
45
  def unnormalize_box(bbox, width, height):
46
+ return [
47
+ width * (bbox[0] / 1000),
48
+ height * (bbox[1] / 1000),
49
+ width * (bbox[2] / 1000),
50
+ height * (bbox[3] / 1000),
51
+ ]
52
+
53
 
54
  def iob_to_label(label):
55
  label = label[2:]
56
  if not label:
57
+ return "other"
58
  return label
59
 
60
+
61
  def process_image(image):
62
  width, height = image.size
63
 
64
  # encode
65
+ encoding = processor(
66
+ image, truncation=True, return_offsets_mapping=True, return_tensors="pt"
67
+ )
68
+ offset_mapping = encoding.pop("offset_mapping")
69
 
70
  # forward pass
71
  outputs = model(**encoding)
 
75
  token_boxes = encoding.bbox.squeeze().tolist()
76
 
77
  # only keep non-subword predictions
78
+ is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
79
+ true_predictions = [
80
+ id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]
81
+ ]
82
+ true_boxes = [
83
+ unnormalize_box(box, width, height)
84
+ for idx, box in enumerate(token_boxes)
85
+ if not is_subword[idx]
86
+ ]
87
 
88
  # draw predictions over the image
89
  draw = ImageDraw.Draw(image)
 
91
  for prediction, box in zip(true_predictions, true_boxes):
92
  predicted_label = iob_to_label(prediction).lower()
93
  draw.rectangle(box, outline=label2color[predicted_label])
94
+ draw.text(
95
+ (box[0] + 10, box[1] - 10),
96
+ text=predicted_label,
97
+ fill=label2color[predicted_label],
98
+ font=font,
99
+ )
100
+
101
  return image
102
 
103
 
104
+ title = "Interactive demo: LayoutLMv3"
105
+ description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
106
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
107
+ examples = [["document.png"]]
108
 
109
  css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
110
+ # css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
111
  # css = ".output_image, .input_image {height: 600px !important}"
112
 
113
  css = ".image-preview {height: auto !important;}"
114
 
115
+ iface = gr.Interface(
116
+ fn=process_image,
117
+ inputs=gr.inputs.Image(type="pil"),
118
+ outputs=gr.outputs.Image(type="pil", label="annotated image"),
119
+ title=title,
120
+ description=description,
121
+ article=article,
122
+ examples=examples,
123
+ css=css,
124
+ enable_queue=True,
125
+ )
126
+ iface.launch(debug=True)
gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text