MuhammmadRizwanRizwan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,83 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
|
5 |
-
import gradio as gr
|
6 |
-
import tensorflow as tf
|
7 |
-
from transformers import pipeline
|
8 |
|
9 |
-
def process_image(image):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
def generate_analysis(emotions):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
def generate_report(emotions, analysis):
|
45 |
-
|
46 |
|
47 |
-
Primary Emotion: {analysis['primary_emotion'].upper()}
|
48 |
-
Confidence: {emotions[analysis['primary_emotion']]:.1f}%
|
49 |
|
50 |
-
All Detected Emotions:
|
51 |
-
""" + '\n'.join(f"- {k}: {v:.1f}%" for k, v in sorted(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
# Create Gradio interface
|
57 |
-
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
app.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
|
3 |
+
gr.load("models/dima806/facial_emotions_image_detection").launch()
|
4 |
|
5 |
+
# import gradio as gr
|
6 |
+
# import tensorflow as tf
|
7 |
+
# from transformers import pipeline
|
8 |
|
9 |
+
# def process_image(image):
|
10 |
+
# try:
|
11 |
+
# # Initialize emotion classifier
|
12 |
+
# classifier = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
|
13 |
|
14 |
+
# # Get predictions
|
15 |
+
# result = classifier(image)
|
16 |
|
17 |
+
# # Convert results to required format
|
18 |
+
# emotions = {item['label']: float(item['score']) * 100 for item in result}
|
19 |
|
20 |
+
# # Generate analysis and report
|
21 |
+
# analysis = generate_analysis(emotions)
|
22 |
+
# report = generate_report(emotions, analysis)
|
23 |
|
24 |
+
# return [(k, v) for k, v in emotions.items()], analysis['detailed_analysis'], report
|
25 |
+
# except Exception as e:
|
26 |
+
# return [("error", 0)], f"Error: {str(e)}", "Error generating report"
|
27 |
|
28 |
+
# def generate_analysis(emotions):
|
29 |
+
# descriptions = {
|
30 |
+
# 'happy': 'indicates joy and positive mood',
|
31 |
+
# 'angry': 'suggests frustration or displeasure',
|
32 |
+
# 'surprise': 'shows astonishment',
|
33 |
+
# 'fear': 'reflects anxiety or concern',
|
34 |
+
# 'neutral': 'displays a balanced state'
|
35 |
+
# }
|
36 |
|
37 |
+
# top_emotion = max(emotions.items(), key=lambda x: x[1])
|
38 |
|
39 |
+
# return {
|
40 |
+
# "primary_emotion": top_emotion[0],
|
41 |
+
# "detailed_analysis": f"Primary emotion detected is {top_emotion[0]} ({top_emotion[1]:.1f}%), which {descriptions.get(top_emotion[0], '')}."
|
42 |
+
# }
|
43 |
|
44 |
+
# def generate_report(emotions, analysis):
|
45 |
+
# return f"""Emotion Analysis Report
|
46 |
|
47 |
+
# Primary Emotion: {analysis['primary_emotion'].upper()}
|
48 |
+
# Confidence: {emotions[analysis['primary_emotion']]:.1f}%
|
49 |
|
50 |
+
# All Detected Emotions:
|
51 |
+
# """ + '\n'.join(f"- {k}: {v:.1f}%" for k, v in sorted(
|
52 |
+
# emotions.items(),
|
53 |
+
# key=lambda x: x[1],
|
54 |
+
# reverse=True))
|
55 |
|
56 |
+
# # Create Gradio interface
|
57 |
+
# with gr.Blocks(theme=gr.themes.Soft()) as app:
|
58 |
+
# gr.Markdown("# Facial Emotion Analysis System")
|
59 |
|
60 |
+
# with gr.Row():
|
61 |
+
# with gr.Column(scale=1):
|
62 |
+
# input_image = gr.Image(type="numpy")
|
63 |
+
# submit_btn = gr.Button("Analyze", variant="primary")
|
64 |
|
65 |
+
# with gr.Column(scale=1):
|
66 |
+
# emotion_scores = gr.Label(label="Emotion Scores")
|
67 |
+
# analysis_text = gr.Textbox(label="Analysis", lines=3)
|
68 |
+
# report_text = gr.Textbox(label="Full Report", lines=10)
|
69 |
+
# download_btn = gr.Button("Download Report")
|
70 |
|
71 |
+
# submit_btn.click(
|
72 |
+
# fn=process_image,
|
73 |
+
# inputs=[input_image],
|
74 |
+
# outputs=[emotion_scores, analysis_text, report_text]
|
75 |
+
# )
|
76 |
|
77 |
+
# download_btn.click(
|
78 |
+
# fn=lambda x: x,
|
79 |
+
# inputs=[report_text],
|
80 |
+
# outputs=[gr.File(label="Download Report")]
|
81 |
+
# )
|
82 |
|
83 |
+
# app.launch()
|