MuhammmadRizwanRizwan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,78 +2,56 @@
|
|
2 |
|
3 |
# gr.load("models/dima806/facial_emotions_image_detection").launch()
|
4 |
|
5 |
-
|
6 |
import gradio as gr
|
7 |
-
from huggingface_hub import from_pretrained_keras
|
8 |
-
import numpy as np
|
9 |
-
from datetime import datetime
|
10 |
import tensorflow as tf
|
|
|
11 |
|
12 |
def process_image(image):
|
13 |
try:
|
14 |
-
|
15 |
-
|
16 |
-
# Preprocess image
|
17 |
-
img = tf.image.resize(image, (48, 48))
|
18 |
-
img = tf.image.rgb_to_grayscale(img)
|
19 |
-
img = img / 255.0
|
20 |
-
img = tf.expand_dims(img, 0)
|
21 |
|
22 |
# Get predictions
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
'angry': float(pred[0][1]),
|
28 |
-
'surprise': float(pred[0][2]),
|
29 |
-
'fear': float(pred[0][3]),
|
30 |
-
'neutral': float(pred[0][4])
|
31 |
-
}
|
32 |
|
33 |
-
# Generate analysis
|
34 |
analysis = generate_analysis(emotions)
|
35 |
-
report = generate_report(
|
36 |
|
37 |
-
return emotions, analysis['detailed_analysis'], report
|
38 |
except Exception as e:
|
39 |
-
return
|
40 |
|
41 |
-
def generate_analysis(
|
42 |
-
|
43 |
-
'happy': 'indicates joy
|
44 |
-
'angry': 'suggests frustration
|
45 |
-
'surprise': 'shows astonishment
|
46 |
-
'fear': 'reflects anxiety
|
47 |
-
'neutral': 'displays a balanced
|
48 |
}
|
49 |
|
50 |
-
top_emotion = max(
|
51 |
|
52 |
return {
|
53 |
-
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
54 |
"primary_emotion": top_emotion[0],
|
55 |
-
"
|
56 |
-
"detailed_analysis": f"Primary emotion: {top_emotion[0]} ({top_emotion[1]:.1f}% confidence)",
|
57 |
-
"secondary_indicators": [f"{k} ({v:.1f}%)" for k, v in emotion_scores.items() if v > 20 and k != top_emotion[0]]
|
58 |
}
|
59 |
|
60 |
-
def generate_report(
|
61 |
-
|
62 |
-
Generated: {analysis['timestamp']}
|
63 |
|
64 |
Primary Emotion: {analysis['primary_emotion'].upper()}
|
65 |
-
Confidence: {
|
66 |
|
67 |
-
|
68 |
-
{', '.join(analysis['secondary_indicators']) if analysis['secondary_indicators'] else 'None significant'}
|
69 |
-
|
70 |
-
All Scores:
|
71 |
""" + '\n'.join(f"- {k}: {v:.1f}%" for k, v in sorted(
|
72 |
-
|
73 |
key=lambda x: x[1],
|
74 |
reverse=True))
|
75 |
-
|
76 |
-
return report
|
77 |
|
78 |
# Create Gradio interface
|
79 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
@@ -81,12 +59,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
81 |
|
82 |
with gr.Row():
|
83 |
with gr.Column(scale=1):
|
84 |
-
input_image = gr.Image(
|
85 |
submit_btn = gr.Button("Analyze", variant="primary")
|
86 |
|
87 |
with gr.Column(scale=1):
|
88 |
-
emotion_scores = gr.Label(label="Emotion
|
89 |
-
analysis_text = gr.Textbox(label="
|
90 |
report_text = gr.Textbox(label="Full Report", lines=10)
|
91 |
download_btn = gr.Button("Download Report")
|
92 |
|
|
|
2 |
|
3 |
# gr.load("models/dima806/facial_emotions_image_detection").launch()
|
4 |
|
|
|
5 |
import gradio as gr
|
|
|
|
|
|
|
6 |
import tensorflow as tf
|
7 |
+
from transformers import pipeline
|
8 |
|
9 |
def process_image(image):
|
10 |
try:
|
11 |
+
# Initialize emotion classifier
|
12 |
+
classifier = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Get predictions
|
15 |
+
result = classifier(image)
|
16 |
|
17 |
+
# Convert results to required format
|
18 |
+
emotions = {item['label']: float(item['score']) * 100 for item in result}
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Generate analysis and report
|
21 |
analysis = generate_analysis(emotions)
|
22 |
+
report = generate_report(emotions, analysis)
|
23 |
|
24 |
+
return [(k, v) for k, v in emotions.items()], analysis['detailed_analysis'], report
|
25 |
except Exception as e:
|
26 |
+
return [("error", 0)], f"Error: {str(e)}", "Error generating report"
|
27 |
|
28 |
+
def generate_analysis(emotions):
|
29 |
+
descriptions = {
|
30 |
+
'happy': 'indicates joy and positive mood',
|
31 |
+
'angry': 'suggests frustration or displeasure',
|
32 |
+
'surprise': 'shows astonishment',
|
33 |
+
'fear': 'reflects anxiety or concern',
|
34 |
+
'neutral': 'displays a balanced state'
|
35 |
}
|
36 |
|
37 |
+
top_emotion = max(emotions.items(), key=lambda x: x[1])
|
38 |
|
39 |
return {
|
|
|
40 |
"primary_emotion": top_emotion[0],
|
41 |
+
"detailed_analysis": f"Primary emotion detected is {top_emotion[0]} ({top_emotion[1]:.1f}%), which {descriptions.get(top_emotion[0], '')}."
|
|
|
|
|
42 |
}
|
43 |
|
44 |
+
def generate_report(emotions, analysis):
|
45 |
+
return f"""Emotion Analysis Report
|
|
|
46 |
|
47 |
Primary Emotion: {analysis['primary_emotion'].upper()}
|
48 |
+
Confidence: {emotions[analysis['primary_emotion']]:.1f}%
|
49 |
|
50 |
+
All Detected Emotions:
|
|
|
|
|
|
|
51 |
""" + '\n'.join(f"- {k}: {v:.1f}%" for k, v in sorted(
|
52 |
+
emotions.items(),
|
53 |
key=lambda x: x[1],
|
54 |
reverse=True))
|
|
|
|
|
55 |
|
56 |
# Create Gradio interface
|
57 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
|
59 |
|
60 |
with gr.Row():
|
61 |
with gr.Column(scale=1):
|
62 |
+
input_image = gr.Image(type="numpy")
|
63 |
submit_btn = gr.Button("Analyze", variant="primary")
|
64 |
|
65 |
with gr.Column(scale=1):
|
66 |
+
emotion_scores = gr.Label(label="Emotion Scores")
|
67 |
+
analysis_text = gr.Textbox(label="Analysis", lines=3)
|
68 |
report_text = gr.Textbox(label="Full Report", lines=10)
|
69 |
download_btn = gr.Button("Download Report")
|
70 |
|