Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import requests | |
import torch | |
import gc | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Download and Create SAM Model | |
print("[Downloading SAM Weights]") | |
SAM_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | |
r = requests.get(SAM_URL, allow_redirects=True) | |
print("[Writing SAM Weights]") | |
with open("./sam_vit_h_4b8939.pth", "wb") as sam_weights: | |
sam_weights.write(r.content) | |
del r | |
gc.collect() | |
sam = sam_model_registry["vit_h"](checkpoint="./sam_vit_h_4b8939.pth").to(device) | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
gc.collect() | |
# Create ControlNet Pipeline | |
print("Creating ControlNet Pipeline") | |
controlnet = ControlNetModel.from_pretrained( | |
"mfidabel/controlnet-segment-anything", torch_dtype=torch.float16 | |
).to(device) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, safety_check=None | |
).to(device) | |
# Description | |
title = "# 🧨 ControlNet on Segment Anything 🤗" | |
description = """This is a demo on 🧨 ControlNet based on Meta's [Segment Anything Model](https://segment-anything.com/). | |
Upload an Image, Segment it with Segment Anything, write a prompt, and generate images 🤗 | |
⌛️ It takes about 20~ seconds to generate 4 samples, to get faster results, don't forget to reduce the Nº Samples to 1. | |
You can obtain the Segmentation Map of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mfidabel/JAX_SPRINT_2023/blob/main/Segment_Anything_JAX_SPRINT.ipynb) | |
A huge thanks goes out to @GoogleCloud, for providing us with powerful TPUs that enabled us to train this model; and to the @HuggingFace Team for organizing the sprint. | |
Check out our [Model Card 🧨](https://huggingface.co/mfidabel/controlnet-segment-anything) | |
""" | |
about = """ | |
# 👨💻 About the model | |
This [model](https://huggingface.co/mfidabel/controlnet-segment-anything) is based on the [ControlNet Model](https://huggingface.co/blog/controlnet), which allow us to generate Images using some sort of condition image. For this model, we selected the segmentation maps produced by Meta's new segmentation model called [Segment Anything Model](https://github.com/facebookresearch/segment-anything) as the condition image. We then trained the model to generate images based on the structure of the segmentation maps and the text prompts given. | |
# 💾 About the dataset | |
For the training, we generated a segmented dataset based on the [COYO-700M](https://huggingface.co/datasets/kakaobrain/coyo-700m) dataset. The dataset provided us with the images, and the text prompts. For the segmented images, we used [Segment Anything Model](https://github.com/facebookresearch/segment-anything). We then created 8k samples to train our model on, which isn't a lot, but as a team, we have been very busy with many other responsibilities and time constraints, which made it challenging to dedicate a lot of time to generating a larger dataset. Despite the constraints we faced, we have still managed to achieve some nice results 🙌 | |
You can check the generated datasets below ⬇️ | |
- [sam-coyo-2k](https://huggingface.co/datasets/mfidabel/sam-coyo-2k) | |
- [sam-coyo-2.5k](https://huggingface.co/datasets/mfidabel/sam-coyo-2.5k) | |
- [sam-coyo-3k](https://huggingface.co/datasets/mfidabel/sam-coyo-3k) | |
""" | |
gif_html = """ <img src="https://github.com/mfidabel/JAX_SPRINT_2023/blob/8632f0fde7388d7a4fc57225c96ef3b8411b3648/EX_1.gif?raw=true" alt= “” height="50%" class="about"> """ | |
examples = [["photo of a futuristic dining table, high quality, tricolor", "low quality, deformed, blurry, points", "examples/condition_image_1.jpeg"], | |
["a monochrome photo of henry cavil using a shirt, high quality", "low quality, low res, deformed", "examples/condition_image_2.jpeg"], | |
["photo of a japanese living room, high quality, coherent", "low quality, colors, saturation, extreme brightness, blurry, low res", "examples/condition_image_3.jpeg"], | |
["living room, detailed, high quality", "low quality, low resolution, render, oversaturated, low contrast", "examples/condition_image_4.jpeg"], | |
["painting of the bodiam castle, Vicent Van Gogh style, Starry Night", "low quality, low resolution, render, oversaturated, low contrast", "examples/condition_image_5.jpeg"], | |
["painting of food, olive oil can, purple wine, green cabbage, chili peppers, pablo picasso style, high quality", "low quality, low resolution, render, oversaturated, low contrast, realistic", "examples/condition_image_6.jpeg"], | |
["Katsushika Hokusai painting of mountains, a sky and desert landscape, The Great Wave off Kanagawa style, colorful", | |
"low quality, low resolution, render, oversaturated, low contrast, realistic", "examples/condition_image_7.jpeg"]] | |
default_example = examples[4] | |
examples = examples[::-1] | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
# Inference Function | |
def show_anns(anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
h, w = anns[0]['segmentation'].shape | |
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB") | |
for ann in sorted_anns: | |
m = ann['segmentation'] | |
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8) | |
for i in range(3): | |
img[:,:,i] = np.random.randint(255, dtype=np.uint8) | |
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m*255))) | |
return final_img | |
def segment_image(image, seed = 0): | |
# Generate Masks | |
np.random.seed(int(seed)) | |
masks = mask_generator.generate(image) | |
torch.cuda.empty_cache() | |
# Create map | |
map = show_anns(masks) | |
del masks | |
gc.collect() | |
torch.cuda.empty_cache() | |
return map | |
def infer(prompts, negative_prompts, image, num_inference_steps = 50, seed = 4, num_samples = 4): | |
try: | |
# Segment Image | |
print("Segmenting Everything") | |
segmented_map = segment_image(image, seed) | |
yield segmented_map, [Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))] * num_samples | |
# Generate | |
rng = torch.Generator(device="cpu").manual_seed(seed) | |
num_inference_steps = int(num_inference_steps) | |
print(f"Generating Prompt: {prompts} \nNegative Prompt: {negative_prompts} \nSamples:{num_samples}") | |
output = pipe([prompts] * num_samples, | |
[segmented_map] * num_samples, | |
negative_prompt = [negative_prompts] * num_samples, | |
generator = rng, | |
num_inference_steps = num_inference_steps) | |
final_image = output.images | |
del output | |
except Exception as e: | |
print("Error: " + str(e)) | |
final_image = segmented_map = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
finally: | |
gc.collect() | |
torch.cuda.empty_cache() | |
yield segmented_map, final_image | |
cond_img = gr.Image(label="Input", shape=(512, 512), value=default_example[2])\ | |
.style(height=400) | |
segm_img = gr.Image(label="Segmented Image", shape=(512, 512), interactive=False)\ | |
.style(height=400) | |
output = gr.Gallery(label="Generated images")\ | |
.style(height=200, rows=[2], columns=[2], object_fit="contain") | |
prompt = gr.Textbox(lines=1, label="Prompt", value=default_example[0]) | |
negative_prompt = gr.Textbox(lines=1, label="Negative Prompt", value=default_example[1]) | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
# Title | |
gr.Markdown(title) | |
# Description | |
gr.Markdown(description) | |
with gr.Column(): | |
# Examples | |
gr.Markdown(gif_html) | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img.render() | |
with gr.Column(scale=1): | |
segm_img.render() | |
with gr.Column(scale=1): | |
output.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
prompt.render() | |
negative_prompt.render() | |
with gr.Column(): | |
with gr.Accordion("Advanced options", open=False): | |
num_steps = gr.Slider(10, 60, 50, step=1, label="Steps") | |
seed = gr.Slider(0, 1024, 4, step=1, label="Seed") | |
num_samples = gr.Slider(1, 4, 4, step=1, label="Nº Samples") | |
segment_btn = gr.Button("Segment") | |
submit = gr.Button("Segment & Generate Images") | |
# TODO: Download Button | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples(examples=examples, | |
inputs=[prompt, negative_prompt, cond_img], | |
outputs=output, | |
fn=infer, | |
examples_per_page=4) | |
with gr.Column(): | |
gr.Markdown(about, elem_classes="about") | |
submit.click(infer, | |
inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples], | |
outputs = [segm_img, output]) | |
segment_btn.click(segment_image, | |
inputs=[cond_img, seed], | |
outputs=segm_img) | |
demo.queue() | |
demo.launch() |