File size: 11,249 Bytes
e1527f1
 
 
 
 
 
 
 
 
f8d8acd
e1527f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
import numpy as np
from sklearn.datasets import make_regression
import pandas as pd
from sklearn.linear_model import ARDRegression, LinearRegression, BayesianRidge
import matplotlib.pyplot as plt
from matplotlib.colors import SymLogNorm
import gradio as gr
import seaborn as sns


X, y, true_weights = make_regression(
    n_samples=100,
    n_features=100,
    n_informative=10,
    noise=8,
    coef=True,
    random_state=42,
)

# Fit the regressors
# ------------------
#
# We now fit both Bayesian models and the OLS to later compare the models'
# coefficients.


def fit_regression_models(n_iter=30, X=X, y=y, true_weights=true_weights):
    olr = LinearRegression().fit(X, y)
    print(f"inside fit_regression n_iter={n_iter}")
    brr = BayesianRidge(compute_score=True, n_iter=n_iter).fit(X, y)
    ard = ARDRegression(compute_score=True, n_iter=n_iter).fit(X, y)
    df = pd.DataFrame(
        {
            "Weights of true generative process": true_weights,
            "ARDRegression": ard.coef_,
            "BayesianRidge": brr.coef_,
            "LinearRegression": olr.coef_,
        }
    )
    return df, olr, brr, ard



# %%
# Plot the true and estimated coefficients
# ----------------------------------------
#
# Now we compare the coefficients of each model with the weights of
# the true generative model.

def visualize_coefficients(df=None):
    fig = plt.figure(figsize=(10, 6))
    ax = sns.heatmap(
        df.T,
        norm=SymLogNorm(linthresh=10e-4, vmin=-80, vmax=80),
        cbar_kws={"label": "coefficients' values"},
        cmap="seismic_r",
    )
    plt.ylabel("linear model")
    plt.xlabel("coefficients")
    plt.tight_layout(rect=(0, 0, 1, 0.95))
    _ = plt.title("Models' coefficients")
    
    return fig

# %%
# Due to the added noise, none of the models recover the true weights. Indeed,
# all models always have more than 10 non-zero coefficients. Compared to the OLS
# estimator, the coefficients using a Bayesian Ridge regression are slightly
# shifted toward zero, which stabilises them. The ARD regression provides a
# sparser solution: some of the non-informative coefficients are set exactly to
# zero, while shifting others closer to zero. Some non-informative coefficients
# are still present and retain large values.

# %%
# Plot the marginal log-likelihood
# --------------------------------


def plot_marginal_log_likelihood(ard=None, brr=None, n_iter=30):
    
    fig = plt.figure(figsize=(10, 6))
    ard_scores = -np.array(ard.scores_)
    brr_scores = -np.array(brr.scores_)
    # print(f"ard_scores = {ard_scores}")
    # print(f"brr_scores = {brr_scores}")
    plt.plot(ard_scores, color="navy", label="ARD")
    plt.plot(brr_scores, color="red", label="BayesianRidge")
    plt.ylabel("Log-likelihood")
    plt.xlabel("Iterations")
    plt.xlim(1, n_iter)
    plt.legend()
    _ = plt.title("Models log-likelihood")
    
    print("fig inside plot marginal = ", fig)
    return fig

def make_regression_comparison_plot(n_iter=30):    

    # print(f"n_iter = {n_iter}")
    # fit models
    df, olr, brr, ard = fit_regression_models(n_iter=n_iter, X=X, y=y, true_weights=true_weights)
    # print(f"df = {df}")
    # get figure
    fig = visualize_coefficients(df=df)
    
    return fig

def make_log_likelihood_plot(n_iter=30):
    
    # print(f"n_iter = {n_iter}")
    # fit models
    df, olr, brr, ard = fit_regression_models(n_iter=n_iter, X=X, y=y, true_weights=true_weights)
    # print(f"df = {df}")
    # get figure
    fig = plot_marginal_log_likelihood(ard=ard, brr=brr, n_iter=n_iter)
    
    print(f"fig = {fig}")
    
    return fig
    
    # visualize coefficients

# # %%
# # Indeed, both models minimize the log-likelihood up to an arbitrary cutoff
# # defined by the `n_iter` parameter.
# #
# # Bayesian regressions with polynomial feature expansion
# # ======================================================
# Generate synthetic dataset
# --------------------------
# We create a target that is a non-linear function of the input feature.
# Noise following a standard uniform distribution is added.



rng = np.random.RandomState(0)
n_samples = 110

# sort the data to make plotting easier later
g_X = np.sort(-10 * rng.rand(n_samples) + 10)
noise = rng.normal(0, 1, n_samples) * 1.35
g_y = np.sqrt(g_X) * np.sin(g_X) + noise
full_data = pd.DataFrame({"input_feature": g_X, "target": g_y})
g_X = g_X.reshape((-1, 1))

# extrapolation
X_plot = np.linspace(10, 10.4, 10)
y_plot = np.sqrt(X_plot) * np.sin(X_plot)
X_plot = np.concatenate((g_X, X_plot.reshape((-1, 1))))
y_plot = np.concatenate((g_y - noise, y_plot))

# %%
# Fit the regressors
# ------------------
#
# Here we try a degree 10 polynomial to potentially overfit, though the bayesian
# linear models regularize the size of the polynomial coefficients. As
# `fit_intercept=True` by default for
# :class:`~sklearn.linear_model.ARDRegression` and
# :class:`~sklearn.linear_model.BayesianRidge`, then
# :class:`~sklearn.preprocessing.PolynomialFeatures` should not introduce an
# additional bias feature. By setting `return_std=True`, the bayesian regressors
# return the standard deviation of the posterior distribution for the model
# parameters.

#TODO - make this function that can be adapted with the gr.slider

def generate_polynomial_dataset(degree = 10):

    ard_poly = make_pipeline(
        PolynomialFeatures(degree=degree, include_bias=False),
        StandardScaler(),
        ARDRegression(),
    ).fit(g_X, g_y)
    brr_poly = make_pipeline(
        PolynomialFeatures(degree=degree, include_bias=False),
        StandardScaler(),
        BayesianRidge(),
    ).fit(g_X, g_y)

    y_ard, y_ard_std = ard_poly.predict(X_plot, return_std=True)
    y_brr, y_brr_std = brr_poly.predict(X_plot, return_std=True)
    
    return y_ard, y_ard_std, y_brr, y_brr_std

# %%
# Plotting polynomial regressions with std errors of the scores
# -------------------------------------------------------------



def visualize_bayes_regressions_polynomial_features(degree = 10):
    
    #TODO - get data dynamically from the gr.slider
    y_ard, y_ard_std, y_brr, y_brr_std = generate_polynomial_dataset(degree)
    
    fig = plt.figure(figsize=(10, 6))
    ax = sns.scatterplot( 
        data=full_data, x="input_feature", y="target", color="black", alpha=0.75)
    ax.plot(X_plot, y_plot, color="black", label="Ground Truth")
    ax.plot(X_plot, y_brr, color="red", label="BayesianRidge with polynomial features")
    ax.plot(X_plot, y_ard, color="navy", label="ARD with polynomial features")
    ax.fill_between(
        X_plot.ravel(),
        y_ard - y_ard_std,
        y_ard + y_ard_std,
        color="navy",
        alpha=0.3,
    )
    ax.fill_between(
        X_plot.ravel(),
        y_brr - y_brr_std,
        y_brr + y_brr_std,
        color="red",
        alpha=0.3,
    )
    ax.legend()
    _ = ax.set_title("Polynomial fit of a non-linear feature")
    # print(f"ax = {ax}")
    return fig
    

# def make_polynomial_comparison_plot():
    

    
#     return fig





title = " Illustration of Comparing Linear Bayesian Regressors with synthetic data"
with gr.Blocks(title=title) as demo:
    gr.Markdown(f"# {title}")
    gr.Markdown(""" This example shows a comparison of two different bayesian regressors: 
        Automatic Relevance Determination - ARD see [sklearn-docs](https://scikit-learn.org/stable/modules/linear_model.html#automatic-relevance-determination) 
         Bayesian Ridge Regression -  see [sklearn-docs](https://scikit-learn.org/stable/modules/linear_model.html#bayesian-ridge-regression)
        The tutorial is split into sections, with the first comparing model coeffecients produced by Ordinary Least Squares (OLS), Bayesian Ridge Regression, and ARD with the known true coefficients. For this 
        We generated a dataset where X and y are linearly linked: 10 of the features of X will be used to generate y. The other features are not useful at predicting y.
        n addition, we generate a dataset where n_samples == n_features. Such a setting is challenging for an OLS model and leads potentially to arbitrary large weights. 
        Having a prior on the weights and a penalty alleviates the problem. Finally, gaussian noise is added. 
        
        For the final tab, we investigate bayesian regressors with polynomial features and generate an additional dataset where the target is a non-linear function of the input feature, with 
        added noise following a standard uniform distribution.
        
     For further details please see the sklearn docs:   
    """)

    gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ard.html#sphx-glr-auto-examples-linear-model-plot-ard-py)** <br>")

        
    with gr.Tab("# Plot true and estimated coefficients"):
        
        with gr.Row():
            n_iter = gr.Slider(value=5, minimum=5, maximum=50, step=1, label="n_iterations")
        btn = gr.Button(value="Plot true and estimated coefficients") 
        btn.click(make_regression_comparison_plot, inputs = [n_iter], outputs= gr.Plot(label='Plot true and estimated coefficients') )
        gr.Markdown(
        """
        # Details

         One can observe that with the added noise, none of the models can perfectly recover the coefficients of the original model. All models have more thab 10 non-zero coefficients,
        where only 10 are useful. The Bayesian Ridge Regression manages to recover most of the coefficients, while the ARD is more conservative.
        """)
    with gr.Tab("# Plot marginal log likelihoods"):        
        with gr.Row():
            n_iter = gr.Slider(value=5, minimum=5, maximum=50, step=1, label="n_iterations")
        btn = gr.Button(value="Plot marginal log likelihoods")
        btn.click(make_log_likelihood_plot, inputs = [n_iter], outputs= gr.Plot(label='Plot marginal log likelihoods') )
        gr.Markdown(
        """
        # Confirm with marginal log likelihoods
        Both ARD and Bayesian Ridge minimized the log-likelihood upto an arbitrary cuttoff defined the the n_iter parameter.
        """
        )
    with gr.Tab("# Plot bayesian regression with polynomial features"):
        with gr.Row():
            degree = gr.Slider(value=5, minimum=5, maximum=50, step=1, label="n_degrees")
        btn = gr.Button(value="Plot bayesian regression with polynomial features")
        btn.click(visualize_bayes_regressions_polynomial_features, inputs = [degree], outputs= gr.Plot(label='Plot bayesian regression with polynomial features') )
        gr.Markdown(
        """
        # Details
        Here we try a degree 10 polynomial to potentially overfit, though the bayesian linear models regularize the size of the polynomial coefficients.
        As fit_intercept=True by default for ARDRegression and BayesianRidge, then PolynomialFeatures should not introduce an additional bias feature. By setting return_std=True,
        the bayesian regressors return the standard deviation of the posterior distribution for the model parameters. 
         
        """)
    

demo.launch()