Spaces:
Runtime error
Runtime error
File size: 11,249 Bytes
e1527f1 f8d8acd e1527f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
import numpy as np
from sklearn.datasets import make_regression
import pandas as pd
from sklearn.linear_model import ARDRegression, LinearRegression, BayesianRidge
import matplotlib.pyplot as plt
from matplotlib.colors import SymLogNorm
import gradio as gr
import seaborn as sns
X, y, true_weights = make_regression(
n_samples=100,
n_features=100,
n_informative=10,
noise=8,
coef=True,
random_state=42,
)
# Fit the regressors
# ------------------
#
# We now fit both Bayesian models and the OLS to later compare the models'
# coefficients.
def fit_regression_models(n_iter=30, X=X, y=y, true_weights=true_weights):
olr = LinearRegression().fit(X, y)
print(f"inside fit_regression n_iter={n_iter}")
brr = BayesianRidge(compute_score=True, n_iter=n_iter).fit(X, y)
ard = ARDRegression(compute_score=True, n_iter=n_iter).fit(X, y)
df = pd.DataFrame(
{
"Weights of true generative process": true_weights,
"ARDRegression": ard.coef_,
"BayesianRidge": brr.coef_,
"LinearRegression": olr.coef_,
}
)
return df, olr, brr, ard
# %%
# Plot the true and estimated coefficients
# ----------------------------------------
#
# Now we compare the coefficients of each model with the weights of
# the true generative model.
def visualize_coefficients(df=None):
fig = plt.figure(figsize=(10, 6))
ax = sns.heatmap(
df.T,
norm=SymLogNorm(linthresh=10e-4, vmin=-80, vmax=80),
cbar_kws={"label": "coefficients' values"},
cmap="seismic_r",
)
plt.ylabel("linear model")
plt.xlabel("coefficients")
plt.tight_layout(rect=(0, 0, 1, 0.95))
_ = plt.title("Models' coefficients")
return fig
# %%
# Due to the added noise, none of the models recover the true weights. Indeed,
# all models always have more than 10 non-zero coefficients. Compared to the OLS
# estimator, the coefficients using a Bayesian Ridge regression are slightly
# shifted toward zero, which stabilises them. The ARD regression provides a
# sparser solution: some of the non-informative coefficients are set exactly to
# zero, while shifting others closer to zero. Some non-informative coefficients
# are still present and retain large values.
# %%
# Plot the marginal log-likelihood
# --------------------------------
def plot_marginal_log_likelihood(ard=None, brr=None, n_iter=30):
fig = plt.figure(figsize=(10, 6))
ard_scores = -np.array(ard.scores_)
brr_scores = -np.array(brr.scores_)
# print(f"ard_scores = {ard_scores}")
# print(f"brr_scores = {brr_scores}")
plt.plot(ard_scores, color="navy", label="ARD")
plt.plot(brr_scores, color="red", label="BayesianRidge")
plt.ylabel("Log-likelihood")
plt.xlabel("Iterations")
plt.xlim(1, n_iter)
plt.legend()
_ = plt.title("Models log-likelihood")
print("fig inside plot marginal = ", fig)
return fig
def make_regression_comparison_plot(n_iter=30):
# print(f"n_iter = {n_iter}")
# fit models
df, olr, brr, ard = fit_regression_models(n_iter=n_iter, X=X, y=y, true_weights=true_weights)
# print(f"df = {df}")
# get figure
fig = visualize_coefficients(df=df)
return fig
def make_log_likelihood_plot(n_iter=30):
# print(f"n_iter = {n_iter}")
# fit models
df, olr, brr, ard = fit_regression_models(n_iter=n_iter, X=X, y=y, true_weights=true_weights)
# print(f"df = {df}")
# get figure
fig = plot_marginal_log_likelihood(ard=ard, brr=brr, n_iter=n_iter)
print(f"fig = {fig}")
return fig
# visualize coefficients
# # %%
# # Indeed, both models minimize the log-likelihood up to an arbitrary cutoff
# # defined by the `n_iter` parameter.
# #
# # Bayesian regressions with polynomial feature expansion
# # ======================================================
# Generate synthetic dataset
# --------------------------
# We create a target that is a non-linear function of the input feature.
# Noise following a standard uniform distribution is added.
rng = np.random.RandomState(0)
n_samples = 110
# sort the data to make plotting easier later
g_X = np.sort(-10 * rng.rand(n_samples) + 10)
noise = rng.normal(0, 1, n_samples) * 1.35
g_y = np.sqrt(g_X) * np.sin(g_X) + noise
full_data = pd.DataFrame({"input_feature": g_X, "target": g_y})
g_X = g_X.reshape((-1, 1))
# extrapolation
X_plot = np.linspace(10, 10.4, 10)
y_plot = np.sqrt(X_plot) * np.sin(X_plot)
X_plot = np.concatenate((g_X, X_plot.reshape((-1, 1))))
y_plot = np.concatenate((g_y - noise, y_plot))
# %%
# Fit the regressors
# ------------------
#
# Here we try a degree 10 polynomial to potentially overfit, though the bayesian
# linear models regularize the size of the polynomial coefficients. As
# `fit_intercept=True` by default for
# :class:`~sklearn.linear_model.ARDRegression` and
# :class:`~sklearn.linear_model.BayesianRidge`, then
# :class:`~sklearn.preprocessing.PolynomialFeatures` should not introduce an
# additional bias feature. By setting `return_std=True`, the bayesian regressors
# return the standard deviation of the posterior distribution for the model
# parameters.
#TODO - make this function that can be adapted with the gr.slider
def generate_polynomial_dataset(degree = 10):
ard_poly = make_pipeline(
PolynomialFeatures(degree=degree, include_bias=False),
StandardScaler(),
ARDRegression(),
).fit(g_X, g_y)
brr_poly = make_pipeline(
PolynomialFeatures(degree=degree, include_bias=False),
StandardScaler(),
BayesianRidge(),
).fit(g_X, g_y)
y_ard, y_ard_std = ard_poly.predict(X_plot, return_std=True)
y_brr, y_brr_std = brr_poly.predict(X_plot, return_std=True)
return y_ard, y_ard_std, y_brr, y_brr_std
# %%
# Plotting polynomial regressions with std errors of the scores
# -------------------------------------------------------------
def visualize_bayes_regressions_polynomial_features(degree = 10):
#TODO - get data dynamically from the gr.slider
y_ard, y_ard_std, y_brr, y_brr_std = generate_polynomial_dataset(degree)
fig = plt.figure(figsize=(10, 6))
ax = sns.scatterplot(
data=full_data, x="input_feature", y="target", color="black", alpha=0.75)
ax.plot(X_plot, y_plot, color="black", label="Ground Truth")
ax.plot(X_plot, y_brr, color="red", label="BayesianRidge with polynomial features")
ax.plot(X_plot, y_ard, color="navy", label="ARD with polynomial features")
ax.fill_between(
X_plot.ravel(),
y_ard - y_ard_std,
y_ard + y_ard_std,
color="navy",
alpha=0.3,
)
ax.fill_between(
X_plot.ravel(),
y_brr - y_brr_std,
y_brr + y_brr_std,
color="red",
alpha=0.3,
)
ax.legend()
_ = ax.set_title("Polynomial fit of a non-linear feature")
# print(f"ax = {ax}")
return fig
# def make_polynomial_comparison_plot():
# return fig
title = " Illustration of Comparing Linear Bayesian Regressors with synthetic data"
with gr.Blocks(title=title) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(""" This example shows a comparison of two different bayesian regressors:
Automatic Relevance Determination - ARD see [sklearn-docs](https://scikit-learn.org/stable/modules/linear_model.html#automatic-relevance-determination)
Bayesian Ridge Regression - see [sklearn-docs](https://scikit-learn.org/stable/modules/linear_model.html#bayesian-ridge-regression)
The tutorial is split into sections, with the first comparing model coeffecients produced by Ordinary Least Squares (OLS), Bayesian Ridge Regression, and ARD with the known true coefficients. For this
We generated a dataset where X and y are linearly linked: 10 of the features of X will be used to generate y. The other features are not useful at predicting y.
n addition, we generate a dataset where n_samples == n_features. Such a setting is challenging for an OLS model and leads potentially to arbitrary large weights.
Having a prior on the weights and a penalty alleviates the problem. Finally, gaussian noise is added.
For the final tab, we investigate bayesian regressors with polynomial features and generate an additional dataset where the target is a non-linear function of the input feature, with
added noise following a standard uniform distribution.
For further details please see the sklearn docs:
""")
gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ard.html#sphx-glr-auto-examples-linear-model-plot-ard-py)** <br>")
with gr.Tab("# Plot true and estimated coefficients"):
with gr.Row():
n_iter = gr.Slider(value=5, minimum=5, maximum=50, step=1, label="n_iterations")
btn = gr.Button(value="Plot true and estimated coefficients")
btn.click(make_regression_comparison_plot, inputs = [n_iter], outputs= gr.Plot(label='Plot true and estimated coefficients') )
gr.Markdown(
"""
# Details
One can observe that with the added noise, none of the models can perfectly recover the coefficients of the original model. All models have more thab 10 non-zero coefficients,
where only 10 are useful. The Bayesian Ridge Regression manages to recover most of the coefficients, while the ARD is more conservative.
""")
with gr.Tab("# Plot marginal log likelihoods"):
with gr.Row():
n_iter = gr.Slider(value=5, minimum=5, maximum=50, step=1, label="n_iterations")
btn = gr.Button(value="Plot marginal log likelihoods")
btn.click(make_log_likelihood_plot, inputs = [n_iter], outputs= gr.Plot(label='Plot marginal log likelihoods') )
gr.Markdown(
"""
# Confirm with marginal log likelihoods
Both ARD and Bayesian Ridge minimized the log-likelihood upto an arbitrary cuttoff defined the the n_iter parameter.
"""
)
with gr.Tab("# Plot bayesian regression with polynomial features"):
with gr.Row():
degree = gr.Slider(value=5, minimum=5, maximum=50, step=1, label="n_degrees")
btn = gr.Button(value="Plot bayesian regression with polynomial features")
btn.click(visualize_bayes_regressions_polynomial_features, inputs = [degree], outputs= gr.Plot(label='Plot bayesian regression with polynomial features') )
gr.Markdown(
"""
# Details
Here we try a degree 10 polynomial to potentially overfit, though the bayesian linear models regularize the size of the polynomial coefficients.
As fit_intercept=True by default for ARDRegression and BayesianRidge, then PolynomialFeatures should not introduce an additional bias feature. By setting return_std=True,
the bayesian regressors return the standard deviation of the posterior distribution for the model parameters.
""")
demo.launch() |