File size: 1,656 Bytes
17e58be 4ae559b 17e58be 4ae559b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import random
import os
model = gr.load("models/black-forest-labs/FLUX.1-schnell")
def generate_image(text, seed, width, height, guidance_scale, num_inference_steps):
if seed is not None:
random.seed(seed)
if text in [example[0] for example in examples]:
print(f"Using example: {text}")
result_image = model(text)
print(f"Width: {width}, Height: {height}, Guidance Scale: {guidance_scale}, Inference Steps: {num_inference_steps}")
return result_image
def randomize_parameters():
seed = random.randint(0, 999999)
width = random.randint(512, 2048)
height = random.randint(512, 2048)
guidance_scale = round(random.uniform(0.1, 20.0), 1)
num_inference_steps = random.randint(1, 40)
return seed, width, height, guidance_scale, num_inference_steps
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."),
gr.Slider(label="Seed", minimum=0, maximum=999999, step=1),
gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024),
gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024),
gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0),
gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28),
],
outputs=gr.Image(label="Generated Image"),
description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.",
)
interface.launch() |