Spaces:
No application file
No application file
Upload 2 files
Browse files- app (2).py +85 -0
- model_final (6).pth +3 -0
app (2).py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
import detectron2
|
3 |
+
except:
|
4 |
+
import os
|
5 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
6 |
+
|
7 |
+
from matplotlib.pyplot import axis
|
8 |
+
import gradio as gr
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
from torch import nn
|
12 |
+
import requests
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import detectron2
|
16 |
+
from detectron2 import model_zoo
|
17 |
+
from detectron2.engine import DefaultPredictor
|
18 |
+
from detectron2.config import get_cfg
|
19 |
+
from detectron2.utils.visualizer import Visualizer
|
20 |
+
from detectron2.data import MetadataCatalog
|
21 |
+
from detectron2.utils.visualizer import ColorMode
|
22 |
+
|
23 |
+
model_path = 'model_final.pth'
|
24 |
+
|
25 |
+
cfg = get_cfg()
|
26 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
27 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
|
28 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 19
|
29 |
+
cfg.MODEL.WEIGHTS = model_path
|
30 |
+
|
31 |
+
|
32 |
+
if not torch.cuda.is_available():
|
33 |
+
cfg.MODEL.DEVICE='cpu'
|
34 |
+
|
35 |
+
predictor = DefaultPredictor(cfg)
|
36 |
+
my_metadata = MetadataCatalog.get("car_part_merged_dataset_val")
|
37 |
+
my_metadata.thing_classes = ['_background_',
|
38 |
+
'back_bumper',
|
39 |
+
'back_glass',
|
40 |
+
'back_left_door',
|
41 |
+
'back_left_light',
|
42 |
+
'back_right_door',
|
43 |
+
'back_right_light',
|
44 |
+
'front_bumper',
|
45 |
+
'front_glass',
|
46 |
+
'front_left_door',
|
47 |
+
'front_left_light',
|
48 |
+
'front_right_door',
|
49 |
+
'front_right_light',
|
50 |
+
'hood',
|
51 |
+
'left_mirror',
|
52 |
+
'right_mirror',
|
53 |
+
'tailgate',
|
54 |
+
'trunk',
|
55 |
+
'wheel']
|
56 |
+
|
57 |
+
def inference(image):
|
58 |
+
print(image.height)
|
59 |
+
|
60 |
+
height = image.height
|
61 |
+
|
62 |
+
# img = np.array(image.resize((500, height)))
|
63 |
+
img = np.array(image)
|
64 |
+
outputs = predictor(img)
|
65 |
+
v = Visualizer(img[:, :, ::-1],
|
66 |
+
metadata=my_metadata,
|
67 |
+
scale=0.5,
|
68 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
69 |
+
)
|
70 |
+
#v = Visualizer(img,scale=1.2)
|
71 |
+
#print(outputs["instances"].to('cpu'))
|
72 |
+
out = v.draw_instance_predictions(outputs["instances"])
|
73 |
+
|
74 |
+
return out.get_image()[:, :, ::-1]
|
75 |
+
|
76 |
+
title = "Detectron2 Car Parts Detection"
|
77 |
+
description = "This demo introduces an interactive playground for our trained Detectron2 model."
|
78 |
+
|
79 |
+
gr.Interface(
|
80 |
+
inference,
|
81 |
+
[gr.inputs.Image(type="pil", label="Input")],
|
82 |
+
gr.outputs.Image(type="numpy", label="Output"),
|
83 |
+
title=title,
|
84 |
+
description=description,
|
85 |
+
examples=[]).launch()
|
model_final (6).pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6e4cbbed694033cd36dfd03bb6f78c16e854ecf23834245099b7c468ecee643
|
3 |
+
size 351792243
|