Nekshay commited on
Commit
4550cd1
·
1 Parent(s): c446184

Upload 2 files

Browse files
Files changed (2) hide show
  1. app (2).py +85 -0
  2. model_final (6).pth +3 -0
app (2).py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ import detectron2
3
+ except:
4
+ import os
5
+ os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
6
+
7
+ from matplotlib.pyplot import axis
8
+ import gradio as gr
9
+ import requests
10
+ import numpy as np
11
+ from torch import nn
12
+ import requests
13
+
14
+ import torch
15
+ import detectron2
16
+ from detectron2 import model_zoo
17
+ from detectron2.engine import DefaultPredictor
18
+ from detectron2.config import get_cfg
19
+ from detectron2.utils.visualizer import Visualizer
20
+ from detectron2.data import MetadataCatalog
21
+ from detectron2.utils.visualizer import ColorMode
22
+
23
+ model_path = 'model_final.pth'
24
+
25
+ cfg = get_cfg()
26
+ cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
27
+ cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
28
+ cfg.MODEL.ROI_HEADS.NUM_CLASSES = 19
29
+ cfg.MODEL.WEIGHTS = model_path
30
+
31
+
32
+ if not torch.cuda.is_available():
33
+ cfg.MODEL.DEVICE='cpu'
34
+
35
+ predictor = DefaultPredictor(cfg)
36
+ my_metadata = MetadataCatalog.get("car_part_merged_dataset_val")
37
+ my_metadata.thing_classes = ['_background_',
38
+ 'back_bumper',
39
+ 'back_glass',
40
+ 'back_left_door',
41
+ 'back_left_light',
42
+ 'back_right_door',
43
+ 'back_right_light',
44
+ 'front_bumper',
45
+ 'front_glass',
46
+ 'front_left_door',
47
+ 'front_left_light',
48
+ 'front_right_door',
49
+ 'front_right_light',
50
+ 'hood',
51
+ 'left_mirror',
52
+ 'right_mirror',
53
+ 'tailgate',
54
+ 'trunk',
55
+ 'wheel']
56
+
57
+ def inference(image):
58
+ print(image.height)
59
+
60
+ height = image.height
61
+
62
+ # img = np.array(image.resize((500, height)))
63
+ img = np.array(image)
64
+ outputs = predictor(img)
65
+ v = Visualizer(img[:, :, ::-1],
66
+ metadata=my_metadata,
67
+ scale=0.5,
68
+ instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
69
+ )
70
+ #v = Visualizer(img,scale=1.2)
71
+ #print(outputs["instances"].to('cpu'))
72
+ out = v.draw_instance_predictions(outputs["instances"])
73
+
74
+ return out.get_image()[:, :, ::-1]
75
+
76
+ title = "Detectron2 Car Parts Detection"
77
+ description = "This demo introduces an interactive playground for our trained Detectron2 model."
78
+
79
+ gr.Interface(
80
+ inference,
81
+ [gr.inputs.Image(type="pil", label="Input")],
82
+ gr.outputs.Image(type="numpy", label="Output"),
83
+ title=title,
84
+ description=description,
85
+ examples=[]).launch()
model_final (6).pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6e4cbbed694033cd36dfd03bb6f78c16e854ecf23834245099b7c468ecee643
3
+ size 351792243